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Abstract

Topological superconductors are phases of matter that cannot be adiabatically connected to a
trivial superconductor without closing the bulk gap or breaking some fundamental symmetry.
Intimately tied to topological superconductors are Majorana bound states. These are neutral
zero-energy quasiparticles, localised to boundaries or defects, that are highly sought after as
ingredients for quantum computation.

In the first part of this thesis, we consider two-dimensional crystalline superconductors
with discrete rotational symmetry. These can host zero-dimensional Majorana bound states
at their corners, indicative of so-called second-order topology. We establish a bulk-boundary
correspondence linking the presence of such Majorana bound states to bulk topological
invariants based on momentum-space rotation representations. We thus establish when a
topological crystalline superconductor protected by rotational symmetry displays second-
order topological superconductivity. Our approach is based on stacked Dirac Hamiltonians,
using which we relate transitions between topological phases to the transformation properties
between adjacent gapped boundaries. We find that in addition to the bulk rotational invariants,
the presence of Majorana bound states in a given geometry depends on the interplay between
weak topological invariants and the location of the rotation centre relative to the lattice.

In the second part of the thesis, we couple a quantum particle to a topology-changing
fermionic bath. Generically, coupling to a bath suppresses the particle’s amplitude to tunnel
between potential minima, even at zero temperature. While this effect can be neglected for
gapped baths, our bath has minima that correspond to different bath topologies. This enforces
the bath to undergo gap closing along the tunnelling path. We develop a field theory for
this quantum tunnelling problem, linking the instantons describing tunnelling in a bath of
𝑑 space dimensions to topological boundary modes of systems in 𝑑 + 1 dimensions. We
study in detail a 𝑑 = 1 example, inspired by planar Josephson junctions where the particle
coordinate is the superconducting phase whose value sets the electronic topology. We find
that the topology change suppresses tunnelling by a factor scaling exponentially with the
system size. This translates to a correspondingly enhanced suppression of the energy splitting
for the lowest-lying states, despite these being linear combinations of states near potential
minima where the bath is gapped. Our results help to estimate the influence of charging
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energy on topological phases arising due to the Josephson effect and, conversely, to assess the
potential utility of such topological systems as superconducting qubits. For moderate-sized
baths, the incomplete suppression of tunnelling opens the prospect of quantum-mechanical
superpositions of many-body states of different topology, including superpositions of states
with and without Majorana fermions.
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Chapter 1

Introduction

Phases of matter are familiar to all of us. In our daily lives, it is obvious that ice cubes from a
freezer at −18°C are indistinguishable from those kept at −17°C, but very distinguishable
from what comes out of a 5°C refrigerator. That water and other classical matter exist in
distinct stable phases depending on their temperature and pressure was understood early
on. With the development of quantum mechanics, however, it became evident that there are
phases of matter that have macroscopic properties inconsistent with any classical description.

Superconductors are one such example. Below a certain temperature, they manage to
evade dissipation and conduct current with zero resistance. Superfluidity and Bose-Einstein
condensation are other exotic examples. In all these cases, the rules of quantum mechanics
that apply to the constituent particles cannot be detached from the mechanism by which the
phases form. This is even true of ferromagnetism, which we encounter at room temperature.
A unified framework for understanding both quantum and classical phases was provided
by Landau with the concept of spontaneous symmetry breaking. In this framework the
underlying Hamiltonian, which governs the dynamics of all degrees of freedom, has a
particular symmetry, whereas states in different phases have a different (lower) symmetry.
When water is in liquid form, its molecules do not have fixed relative position: at any instant,
the molecules are randomly distributed and the liquid looks the same when displaced by an
arbitrary distance. In this sense a liquid has continuous translational symmetry, which is
shared by the Hamiltonian because the rules of electromagnetism are homogenous. Contrast
this to ice, where molecules are arranged in a regular lattice such that it is invariant only when
translated by a discrete lattice vector. Solids therefore have discrete translational symmetry
unlike the Hamiltonian, and transitioning from a liquid to a solid counts as spontaneous
symmetry breaking. The same principles of identifying broken symmetries to classify phases
apply to all of the systems above. For example, in a superconducting phase it is the global
U(1) gauge symmetry that is broken. The success of this theory led physicists to believe that
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symmetry breaking could explain phase transitions in all contexts. Yet, at zero temperature
there turn out to be distinct quantum phases of matter that have the same symmetry. The
difference instead lies in the pattern of entanglement in their ground states, and can be
differentiated by borrowing concepts from topology.

Topology is a branch of mathematics that concerns itself with properties of objects that are
preserved under continuous deformation. When this object is geometrical, such deformations
can be anything that doesn’t involve tearing, gluing or passing the object through itself. With
a more flexible notion of ‘continuous deformation’, one can study topology in other contexts,
even physical systems. The philosophy of studying ‘topological phases of matter’ is to apply
topology to the many-body ground state |Ω⟩, relevant to gapped quantum systems near zero
temperature. (We interchangeably label a gapped system by its Hamiltonian or ground state,
depending on which is convenient.) The aim is to gather up systems into equivalence classes
based on which systems—composed of fermions or bosons in a certain dimension—are
continuously deformable into each other, labelled by topological invariants that one can
calculate from the quantum states. What is remarkable is that systems that are topologically
equivalent also have qualitatively similar experimental observables, which justifies thinking
of them as quantum phases of matter.

In this thesis, we are interested in superconductors that can simultaneously be topological
phases of matter. These have many potential exciting consequences, particularly in quantum
information, and their realisation is a major goal of modern condensed matter physics. We
will elucidate two separate links between topological nontriviality in superconductors and
observable features, with relevance to modern experimental platforms.

1.1 Topological Classification of Superconductors

The labelling of a phase as ‘topological’ can have many different meanings in condensed
matter physics, but in this thesis it will have one meaning that we now try to place in context.
The first thing to point out is that we must narrow our considerations to a privileged class of
quantum states; otherwise, any two states in a Hilbert space can be trivially deformed into
each other by taking a linear superposition interpolating between the two that necessarily
lives in the same space. All states are therefore connected when there are no restrictions.

One sensible restriction is to states that are the ground states of gapped local Hamiltonians.1
The ground states of these systems satisfy an area law of entanglement [2] saying that

1Being ‘gapped’ has the precise definition of a sequence of Hamiltonians approaching the thermodynamic
limit possessing no eigenvalues in a certain energy window [1]. This is needed because any finite system has
a discrete spectrum and hence a gap in the naïvest sense. We keep in mind only the principle of this proper
definition, however.
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entanglement entropy between a subregion A and its contiguous complement Ā grows at
most linearly with the size of the boundary ofA, which immediately places many restrictions
on the state. Interpolating between two generic states may therefore necessitate passing
through a state that cannot be the ground state of a gapped local Hamiltonian, which provides
a way for this space to be disconnected and nontrivial. Each disconnected component is
called a phase, and a phase transition necessarily comes with a gap closing. Consider two
states |Ω0⟩ and |Ω1⟩ that are the ground states of gapped local Hamiltonians �̂�0 and �̂�1,
respectively. Expressed in terms of their Hamiltonians, these are in the same phase if there
is a smooth path �̂�𝑡 for 0 ≤ 𝑡 ≤ 1 connecting them, such that �̂�𝑡 remains gapped and local
throughout. This means |Ω0⟩ and |Ω1⟩ are connected through an adiabatic evolution that
does not close the gap.2 In Chen et al.’s definition, there is one phase that stands out as trivial,
namely the short-range entangled (SRE) phase containing states connected to an unentangled
direct-product state in real space. The remaining states (still satisfying an area law) are called
long-range entangled (LRE), and their equivalence classes map out the topological order.
Topologically ordered states can host phenomena such as fractional charge, anyons with
non-Abelian exchange statistics, ground state degeneracy (that depends on the topology of
the underlying manifold, e.g., the genus in two dimensions) or gapless edge excitations [4, 1].
This is not the topology of interest in this thesis, however, because we require an extra
ingredient: symmetry.

Many condensed matter systems possess symmetries—be they fine-tuned or not—so
rather than consider states of otherwise arbitrary gapped local Hamiltonians, one can restrict
oneself to Hamiltonians that have certain symmetries. One then redefines equivalence to be
in terms of smooth paths �̂�𝑡 that remain gapped and possess the same symmetry throughout.
Under this definition, ground states can be in different phases even if they do not spontaneously
break a symmetry of the system, going beyond Landau’s classification. The nontrivial SRE
phases that do not break a symmetry of the system are called symmetry-protected topological
(SPT) phases since they could all be connected to a product state if the symmetry requirement
on adiabatic evolution were relaxed. In this sense, SPT phases are less robust, but still possess
interesting phenomena such as gapless edge excitations.

The taxonomy we have discussed thus far has applied equally to interacting Hamiltonians,
so long as the interactions are local. From now on, however, we will only be discussing
the topology of non-interacting Hamiltonians involving fermions, i.e., ‘free-fermion SPTs’
according to the above terminology. Since the properties of these systems are entirely captured

2This adiabatic evolution is generated by unitary evolution under a different local Hamiltonian �̂�′𝑡 , |Ω1⟩ =
T [𝑒−𝑖

∫ 1
0 𝑑𝑡 �̂�′𝑡 ] |Ω0⟩ (where T denotes time-ordering), which is a more practical condition for distinguishing

SRE states from LRE states (defined below) [3].
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by single-particle Hamiltonian matrices, their classification is much easier and, in some ways,
complete. This classification scheme also extends to BCS superconductors with minimal
modification by treating the Bogoliubov-de-Gennes (BdG) Hamiltonian on the same level as
a single-particle Hamiltonian, even though superconductivity derives from interaction.3

1.1.1 Topology in Free Fermion Systems

The integer quantum Hall effect (IQHE) was the first condensed matter system whose
properties were found to be topological in origin, occurring for a two-dimensional (2D)
electron gas in the presence of a magnetic field [7]. The quantised Hall conductance was
explained by an integer topological invariant called the Chern number that can be calculated
solely from the single-particle eigenstates [8]. The fundamental quantity of this invariant
(and many others) is the non-Abelian Berry connection—a differential 1-form—defined4 for
Bloch eigenstates,5 |𝑢𝛼 (k)⟩, as [10]

A𝛼𝛽 = ⟨𝑢𝛼 (k) |𝑑𝑢𝛽 (k)⟩ = ⟨𝑢𝛼 (k) |∇k𝑢
𝛽 (k)⟩ · 𝑑k ≡

∑︁
𝑖

A𝛼𝛽
𝑖 𝑑𝑘 𝑖, (1.1)

where the band indices 𝛼, 𝛽 run over occupied bands only. From this, one may define a
gauge-invariant Berry curvature

F 𝛼𝛽 = 𝑑A𝛼𝛽 + (A∧A)𝛼𝛽 =
∑︁
𝑖 𝑗

(𝜕𝑘 𝑖A 𝑗 − 𝜕𝑘 𝑗A𝑖 + [A𝑖,A 𝑗 ])𝛼𝛽 𝑑𝑘 𝑖 ∧ 𝑑𝑘 𝑗 (1.2)

where ∧ denotes the exterior product (an antisymmetric product of differential forms). The
first Chern number is then given by integrating the diagonal components of the Berry curvature
over the first Brillouin zone (BZ)

Ch =
𝑖

2𝜋

∫
BZ

Tr{F } ∈ ℤ. (1.3)

Since the IQHE, nontrivial topology has been found to be much more ubiquitous than
originally thought following the discovery of topological insulators (TIs) with spin-orbit

3Tangentially, Wen noticed that all realistic superconductors are technically LRE when coupled to a dynamical
electromagnetic gauge field because they lack a gauge-invariant local order parameter [6], but this is not what
we mean when we label our superconductors as topological.

4Strong topological invariants are most easily expressed in momentum space, even though their protection
does not hinge on translation symmetry. There are also weak invariants, encountered in Chapter 2, where
translation symmetry is actually necessary [9].

5In this basis �̂� =
∑

k∈BZ
∑

𝛼𝛽 𝑐
†
𝛼 (k)H𝛼𝛽 (k) 𝑐𝛽 (k) and H(k) |𝑢𝛼 (k)⟩ = 𝐸𝛼 |𝑢𝛼 (k)⟩, which are periodic

upon adding reciprocal lattice vectors k→ k+G.
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coupling [9, 11, 12]. These materials can have topological invariants that, although definable
in terms of the Berry connection, are very different from the Chern number. These are namely
the ℤ2-valued first- and second-descendant invariants [13]. In fact, the group structure
of the invariants follows directly from a system’s dimension and behaviour under some
fundamental non-spatial (antiunitary) symmetries: time-reversal (TR), particle-hole (PH)
and chiral symmetry.6 These define an Altland-Zirnbauer (AZ) symmetry class [14]. The
symmetry classes and associated group structures are mapped out exhaustively in the tenfold
way, acting as a “periodic table” of topological insulators and superconductors which was a
great triumph in the field [15–18]. This table has its own rich structure that we will not be
exposed to because our later chapters involve only one or two symmetry classes.

A key tenet of this table is that the classification is stable under the addition of trivial bands,
which means that all of the groups are Abelian under stacking, i.e., underH0 ⊕H1 =

[
H0 0
0 H1

]
.

Trivial bands correspond to insulators in their atomic limit such that they have no structure
in momentum space, being examples of the direct-product states mentioned in Sec. 1.1.
The motivation for this condition is that real materials, with their many core and unfilled
atomic orbitals, can have bands far below or above the Fermi energy; these could in principle
get closer to the Fermi energy and hybridise with the relevant bands as the Hamiltonian is
deformed. Concretely, two HamiltoniansH0 andH1 are stably equivalent if there exist some
trivial bands E0 and E1 such thatH0 ⊕E0 is strictly equivalent toH1 ⊕E1. Strict equivalence
betweenH0 andH1 that have the same number of bands requires a smooth path of symmetric
HamiltoniansH𝑡 = (1− 𝑡)H0+ 𝑡H1 to remain gapped for 0 ≤ 𝑡 ≤ 1. The ‘gap’ being preserved
here is the finite energy difference between the 𝜈th and (𝜈 + 1)th bands, where the Fermi
energy lies. Requiring stability means that the appropriate ‘difference’ between Hamiltonians
is captured through the mathematics of what is called K-theory [17].

The main reason that the tenfold way invariants are of immense interest is the bulk-
boundary correspondence, which guarantees gapless states at the boundaries of systems that
have topologically nontrivial bulk invariants [10]. In some ways, this correspondence is not
surprising: we have presented topological inequivalence as an obstruction to adiabatically
connecting systems without closing a gap, while a boundary may be equally viewed as the
variation of a parameter in space that interpolates between the bulk material and the trivial
vacuum. The anomalous Hall conductance in the IQHE is itself an example of bulk-boundary
correspondence because it is mediated by chiral edge states whose presence and direction
are governed by the Chern number. We will soon encounter more examples extending to
superconductors.

6These are fundamental because they classify the irreducible blocks of any Hamiltonian brought into
diagonal form by a unitary symmetry [10], but we revisit this reasoning in Sec. 1.1.4 when we strongly enforce
unitary symmetries.
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1.1.2 Bogoliubov-de-Gennes Hamiltonians

The superconductors we encounter in this thesis will all be described at the level of BCS
mean-field theory [19]. At this level, the superconducting Hamiltonian may be described by
an effectively single-particle BdG Hamiltonian

�̂� =
1
2

∑︁
𝛼𝛽

𝜉†𝛼H𝛼𝛽 𝜉𝛽, (1.4)

where 𝜉𝛼 = (𝑐𝛼, 𝑐†𝛼)𝑇 is the Nambu spinor for site/orbital 𝛼 and H =H† is a Hermitian
matrix. Inherent to any BdG system is a redundancy known as particle-hole (PH) symmetry.
This is because 𝜉𝛼 and 𝜉†𝛼 are not independent, but instead linked to each other through
(𝜎1𝜉𝛼)𝑇 = 𝜉†𝛼, which yields the PH condition7

𝜎1H ∗𝜎1 = −H . (1.5)

We view this as the anticommutation ofH with an antiunitary operator Ξ =K𝜎1 which is a
local unitary operator composed with complex conjugation K.8 This means that the BdG
Hamiltonian may be written in block form

H =

[
𝐻0 Δ

−Δ∗ −𝐻𝑇0

]
, (1.6)

where 𝐻0 = 𝐻†0 represents the normal part, and Δ = −Δ𝑇 the pairing terms. When PH
symmetry Ξ is the superconductor’s only symmetry and Ξ2 = +1, we say it is in Class D [10].

The PH constraint (1.5) is reflected in the excitation spectrum of the superconductor,
given by the eigenvalues ofH :

H𝜓𝐸 = 𝐸𝜓𝐸 =⇒ H(Ξ𝜓𝐸 ) = −𝐸 (Ξ𝜓𝐸 ). (1.7)

That is, any eigenvector with energy 𝐸 has a PH conjugate eigenvector with energy −𝐸 .
Their corresponding Bogoliubov operators 𝜁†𝐸 (obeying fermionic anticommutation relations

7Pauli matrices are denoted by 𝜎𝑖=1,2,3 throughout this thesis. Here, 𝜎1 =
[ 0 1

1 0
]

acts on PH orbital space.
8One often works in momentum space with Nambu basis 𝜉𝛼 (k) = (𝑐𝛼 (k), 𝑐†𝛼 (−k))𝑇 , in which case the

reversal of momentum k under PH conjugation means that the symmetry relation is instead

𝜎1H ∗ (k)𝜎1 = −H(−k).
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{𝜁𝐸 , 𝜁†𝐸 ′} = 𝛿𝐸𝐸 ′) are not all independent either, since

𝜁†𝐸 = 𝜉†𝜓𝐸 = (𝜉†𝜎1) (𝜎1𝜓𝐸 ) = (𝜎1𝜉 )†(𝜎1𝜓𝐸 ) = 𝜉𝑇𝜓∗−𝐸 = 𝜁−𝐸 . (1.8)

[This again emphasises that the doubling of the number of degrees of freedom in Eq. (1.4) is
only artificial.] The Hamiltonian is diagonal in these Bogoliubov fermions, which we can
write purely in terms of positive-energy quasiparticles (also called canonical modes):

�̂� =
1
2

∑︁
𝐸𝛼

𝐸𝛼𝜁
†
𝐸𝛼
𝜁𝐸𝛼

=
1
2

∑︁
𝐸𝛼>0

𝐸𝛼

(
𝜁†𝐸𝛼

𝜁𝐸𝛼
− 𝜁†−𝐸𝛼

𝜁−𝐸𝛼

)
=

∑︁
𝐸𝛼>0

𝐸𝛼𝜁
†
𝐸𝛼
𝜁𝐸𝛼
− 1

2

∑︁
𝐸𝛼>0

𝐸𝛼 . (1.9)

From this it is clear that the ground state |Ω⟩ should be annihilated by each 𝜁𝐸𝛼>0, such
that the ground state energy is 𝐸GS = −1

2
∑
𝐸𝛼>0𝐸𝛼.9 Denote by �̂� the unitary Bogoliubov

transformation that relates positive-energy quasiparticles to the underlying fermions through
𝜁𝐸𝛼>0 = �̂�𝑐𝛼�̂�† for all 𝛼. The ground state is thus |Ω⟩ = �̂� |0⟩ relative to the fermionic
vacuum |0⟩ [20]. (For superconductors, therefore, the relevant gap that determines the ground
state and hence the topology is that centred around 𝐸 = 0.) The operator �̂� can either preserve
or flip the total parity �̂� = (−1) �̂� : [�̂�,�̂�] = 0 or {�̂�,�̂�} = 0.10 Hence, our statement about
the ground state energy requires care when restricting ourselves to a specific parity sector,
because the true ground state |Ω⟩ may not have even parity like |0⟩. Ground state parity
turns out to be integral to the notion of topology in zero- and one-dimensional Class D
superconductors, as we see in the next section.

1.1.3 Majorana Zero Modes

For a non-interacting parity-preserving lattice Hamiltonian such as Eq. (1.4), one may always
write it in a form that is bilinear in some Majorana operators formally defined as

�̂�2 𝑗−1 = 𝑐 𝑗 + 𝑐†𝑗 , �̂�2 𝑗 = −𝑖(𝑐 𝑗 − 𝑐†𝑗 ) (1.10)

9For this reason, the BdG representation of a charge-conserving free-fermion system technically requires
an extra term 𝑐†𝐻0 𝑐→ 𝜉†H 𝜉 + 1

2 Tr[𝐻0] to reproduce the same ground state energy. This offset is generally
immaterial, but an important exception is when the spectrum of 𝐻0 is not bounded from above (e.g., in a
quadratically dispersing Fermi sea filled up to some chemical potential), in which case 𝐸GS = −∞ without it.
All our superconducting systems will be defined from the start by Eq. (1.4), however, so we need not worry
about this energy offset.

10In terms of the Majorana operators below, �̂� maps any Majorana operator to a linear combination of
Majorana operators (�̂��̂�𝛼�̂�† =

∑
𝛽𝑊𝛼𝛽 �̂�𝛽 where𝑊𝑇𝑊 = 1) and hence has definite parity [20]. Its generators

are rotations 𝑒 𝜃
2 �̂�𝛼 �̂�𝛽 and reflections �̂�𝛼. This form of the ground state agrees with the familiar coherent state of

Cooper pairs 𝑐†k𝑐
†
−k, provided one separately treats inversion symmetric momenta where k = −k.
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which are Hermitian (�̂�𝛼)† = �̂�𝛼, and satisfy an anticommutation relation

{�̂�𝛼, �̂�𝛽} = 2𝛿𝛼𝛽 (1.11)

unlike ordinary fermions. The parity operator takes the form �̂� =
∏

𝑗 (−𝑖�̂�2 𝑗−1�̂�2 𝑗 ). In this
Majorana basis, the Hamiltonian is

�̂� =
𝑖

4

∑︁
𝛼𝛽

�̂�𝛼𝐴𝛼𝛽 �̂�𝛽, (1.12)

where 𝐴 = −𝐴𝑇 is a real antisymmetric matrix, which may be brought into canonical form [21]
by an orthogonal transformation𝑊 such that

𝑊𝐴𝑊𝑇 =



0 𝐸1

−𝐸1 0
. . .

0 𝐸𝑁

−𝐸𝑁 0


. (1.13)

Of course, there can be nothing profound that results from simply changing basis—rather,
the interest is in Majorana operators that behave independently as excitations of a condensed
matter system (or fundamental field, if they are to also excite high-energy physicists [22]).
As long as a Majorana has a degenerate local partner, reversing the construction (1.10) will
always yield a single conventional fermion, which is the obstacle that any physical realisation
has to overcome. Consider again the superconductor in Eq. (1.7) when there is a zero mode
𝜓0 with 𝐸 = 0. If this is locally non-degenerate, then we must have Ξ𝜓0 ∝ 𝜓0 (on account
of PH conjugation being local), or specifically Ξ𝜓0 = 𝜓0 in the right gauge. By Eq. (1.8),
we conclude that such a zero energy Bogoliubov quasiparticle 𝜁0 = 𝜁

†
0 would be its own

antiparticle, and hence a Majorana zero mode (MZM). The enormous challenge of Majorana
experiments is to both engineer superconductors that possess locally non-degenerate zero
modes, and perform measurements on them that conclusively exclude more mundane mid-gap
states [23, 24].

One Dimension

Theoretically, it is very easy to construct a model superconductor in one dimension (1D) that
possesses MZMs. One ubiquitous toy model is called the Kitaev chain [25], which suffices
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Fig. 1.1 A cartoon showing the two topologically inequivalent dimerised limits of the Kitaev
chain. With open boundary conditions (OBC), the topological phase supports Majorana zero
modes (MZMs) at its ends, shown in red.

to highlight the inextricable link between MZMs and the bulk topology that underlies their
robustness. It will also be a building block for examples that appear in Chapters 2 and 3.

For some spinless electrons 𝑐 𝑗 on a 1D lattice, construct a Hamiltonian

�̂�Kitaev =
∑︁
𝑗

[
−𝑤

(
𝑐†𝑗𝑐 𝑗+1 + 𝑐†𝑗+1𝑐 𝑗

)
− 𝜇

(
𝑐†𝑗𝑐 𝑗 −1/2

)
+Δ𝑐 𝑗𝑐 𝑗+1 +Δ∗ 𝑐†𝑗+1𝑐†𝑗

]
, (1.14)

consisting of a hopping term with amplitude 𝑤, a uniform onsite chemical potential 𝜇 and
𝑝-wave pairing with superconducting gap Δ = |Δ|𝑒𝑖𝜙. Changing to a basis of Majorana
operators using Eq. (1.10) [gauging away 𝑒𝑖𝜙 through 𝑐 𝑗 → 𝑒−𝑖𝜙/2𝑐 𝑗 for simplicity], we arrive
at

�̂�Kitaev =
𝑖

2

∑︁
𝑗

[−𝜇�̂�2 𝑗−1�̂�2 𝑗 + (𝑤 + |Δ|) �̂�2 𝑗 �̂�2 𝑗+1 + (−𝑤 + |Δ|) �̂�2 𝑗−1�̂�2 𝑗+2
]
. (1.15)

It is instructive to consider a dimerised limit of this model where 𝑤 = |Δ| and 𝜇 = 0, with a
simple Hamiltonian

�̂�topo = 𝑖 |Δ|
∑︁
𝑗

�̂�2 𝑗 �̂�2 𝑗+1. (1.16)

Now specify a chain that is finite with 𝐿 sites, having open boundary conditions (OBC) as
illustrated in Figure 1.1. Notice that two Majorana operators �̂�1 ≡ �̂�′ and �̂�2𝐿 ≡ �̂�′′ do not
appear in the Hamiltonian and hence commute with it: [�̂�′(′) , �̂�topo] = 0, equivalent to the
single-particle Hamiltonian having two locally non-degenerate zero modes. That is, this limit
of the Kitaev chain with OBC supports two MZMs on its ends, separated by a gapped bulk.
This can be viewed as the fractionalisation of a regular fermion. The opposite, trivial, limit
�̂�triv = −𝑖 𝜇2

∑
𝑗 �̂�2 𝑗−1�̂�2 𝑗 (at 𝑤 = |Δ| = 0 and 𝜇 < 0) pairs Majorana operators on the same site

and so leaves no Majoranas unpaired.
Importantly, the MZMs persist even when the parameters 𝑤, Δ and 𝜇 are perturbed away

from this finely tuned point (and do not spontaneously appear near the other fine-tuned
trivial point), so long as the gap does not close and 𝐿 ≫ 1. Whereas gapping out the
Majoranas (i.e., moving them symmetrically away from zero energy) in �̂�topo would require
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a non-local term ∝ 𝑖�̂�′�̂�′′, MZMs typically have finite spatial extent (decaying as 𝑒−|𝑥−𝑥0 |/𝜉

with some characteristic length 𝜉), meaning they are effectively coupled through local terms
in the Hamiltonian if the MZM wavefunctions overlap [25]. (This is unwanted if trying to
experimentally realise true MZMs.) This splitting scales as 𝑡 ∝ 𝑒−𝐿/𝜉 , where 𝜉 depends on the
relative strength of the energy scales in the Hamiltonian (1.14). The effective splitting term
(𝑖/2)𝑡�̂�′�̂�′′ counts the cost of occupying a non-local fermionic mode 𝑑 = (�̂�′+ 𝑖�̂�′′)/2. Hence,
up to a correction exponentially small in the size of the system, the many-body spectrum
is degenerate when in the topological phase, with degenerate states differing in their 𝑑†𝑑
occupancy.

In more sophisticated Majorana networks the system supports many pairs of MZMs—𝑁

of them, say—leading to a 2𝑁−1-fold ground state degeneracy when conserving parity. In
proposals that use MZMs as “topological qubits”, this defines a computational subspace in
which one can perform qubit operations. Fundamental to these operations is the fact that
MZMs obey non-Abelian statistics [26, 27], on which we shall not elaborate. Indeed, it is
the prospect of MZMs as ingredients for stable qubits that means that in the zoo of gapless
modes classified by the tenfold way, none have received as much commercial attention as
MZMs in topological superconductors [28].

Relating Majorana Zero Modes to an Invariant

Seeing that these emergent MZMs show some robustness motivates looking for nontrivial
topology in the bulk Hamiltonian, which we do by following Kitaev’s original paper [25].
Start with an open chain of length 𝐿 hosting MZMs �̂�′ and �̂�′′ on its ends (much like �̂�topo,
but not necessarily in the zero correlation length limit). Since the bulk is gapped, the
parity operator may be replaced by �̂� = 𝑠(𝐿) (−𝑖�̂�′�̂�′′) where 𝑠(𝐿) = ±1. Define the two
ground states to be |Ω𝐿

𝛼⟩ for 𝛼 = 0,1 with parities 𝑠(𝐿) (−1)𝛼. Now turn on a direct coupling
�̂�𝐿 = 𝑖𝑢�̂�′′�̂�′ between the ends that essentially closes the chain, seen in Figure 1.2, such that
its (now non-degenerate) ground state |Ω𝐿⟩ is |Ω𝐿

1 ⟩ if 𝑢 > 0, and |Ω𝐿
0 ⟩ if 𝑢 < 0. The parity is

hence given by �̂� |Ω𝐿⟩ = −𝑠(𝐿) sgn𝑢 |Ω𝐿⟩. The crucial finding will be that the presence or
absence of MZMs in an open chain is encoded in the behaviour of the overall ground state
parity of compositions of closed chains.

Consider two open chains 𝐴 and 𝐵 of lengths 𝐿𝐴 and 𝐿𝐵, respectively, supporting MZMs
on their ends. There are two ways to join these up, either as two disconnected loops or as one
long loop (shown in Figure 1.2):

�̂�𝐿𝐴
⊕ �̂�𝐿𝐵

= 𝑖𝑢
[
�̂�′′𝐴�̂�

′
𝐴 + �̂�′′𝐵�̂�′𝐵

]
, or (1.17)

�̂�𝐿𝐴+𝐿𝐵
= 𝑖𝑢

[
�̂�′′𝐴�̂�

′
𝐵 + �̂�′′𝐵�̂�′𝐴

]
, (1.18)
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Fig. 1.2 Two topological Kitaev chains of lengths 𝐿𝐴 = 6 and 𝐿𝐵 = 5 closed up in two distinct
ways, either as one big ring �̂�𝐿𝐴+𝐿𝐵

or two smaller rings �̂�𝐿𝐴
⊕ �̂�𝐿𝐵

. Majoranas that are close
together belong to the same site. Though common, graphically representing a hybridisation
𝑖�̂�′′�̂�′ with undirected bonds is ambiguous because 𝑖�̂�′′�̂�′ ≠ 𝑖�̂�′�̂�′′. Here, the bonds 𝑖�̂�′′�̂�′ are
directed anti-clockwise when their coefficients are positive.

having ground states |Ω𝐿𝐴 ⊗Ω𝐿𝐵⟩ and |Ω𝐿𝐴+𝐿𝐵⟩, respectively. Their parities under the total
parity operator �̂� = 𝑠(𝐿1)𝑠(𝐿2) (−𝑖�̂�′𝐴�̂�′′𝐴) (−𝑖�̂�′𝐵�̂�′′𝐵) have opposite sign:11

�̂� |Ω𝐿𝐴 ⊗Ω𝐿𝐵⟩ = 𝑠(𝐿1)𝑠(𝐿2) |Ω𝐿𝐴 ⊗Ω𝐿𝐵⟩, (1.19)

�̂� |Ω𝐿𝐴+𝐿𝐵⟩ = −𝑠(𝐿1)𝑠(𝐿2) |Ω𝐿𝐴+𝐿𝐵⟩. (1.20)

This is in contrast to the ground states of equivalent loops formed with trivial superconducting
chains, whose parities would have the same sign because the chains are always gapped. We
therefore have

⟨Ω𝐿𝐴+𝐿𝐵 |�̂� |Ω𝐿𝐴+𝐿𝐵⟩ = 𝜈 ⟨Ω𝐿𝐴 ⊗Ω𝐿𝐵 |�̂� |Ω𝐿𝐴 ⊗Ω𝐿𝐵⟩, (1.21)

where 𝜈 = −1,+1 distinguishes between the presence or absence of MZMs, respectively.
This distinction holds when forming closed chains of any translationally invariant 1D
superconductor, which is useful because it makes no reference to a boundary.

Recalling our discussions in Sec. 1.1.2, the ground state parity is determined by whether
the unitary operator �̂� that brings the BdG Hamiltonian into its canonical form is parity
preserving or not. This depends on whether the corresponding orthogonal transformation𝑊
in the Majorana basis is purely rotational, in which case sgndet𝑊 = 1. This quantity can be

11Both parities are independent of sgn𝑢 because there are two 𝑢 links, while the sign difference follows
because (−𝑖�̂�′

𝐴
�̂�′′
𝐴
) (−𝑖�̂�′

𝐵
�̂�′′
𝐵
) = −(−𝑖�̂�′

𝐴
�̂�′′
𝐵
) (−𝑖�̂�′

𝐵
�̂�′′
𝐴
).
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cast directly in terms of the Majorana Hamiltonian through a function called the Pfaffian12,
defined for antisymmetric matrices, which satisfies Pf (𝐴)2 = det(𝐴) and

Pf (𝑊𝐴𝑊𝑇 ) = Pf (𝐴) det(𝑊). (1.22)

We can immediately apply to this to the canonical form in Eq. (1.13) to conclude13 that

⟨Ω|�̂� |Ω⟩ = sgndet(𝑊) = sgnPf (𝐴). (1.23)

All that remains is to apply this parity formula to closed chains by switching to momentum
space. For a translationally invariant superconductor with 𝐿 sites and periodic boundary
conditions (PBC), one finds that in terms of its Fourier-transformed Majorana Hamiltonian
𝐴𝑞 [25],

⟨Ω|�̂� |Ω⟩ = sgnPf (𝐴) =


sgnPf (𝐴𝑘=0) sgnPf (𝐴𝑘=𝜋) 𝐿 even

sgnPf (𝐴𝑘=0) 𝐿 odd.
(1.24)

This features only momenta 𝑘 = −𝑘 , where 𝐴𝑘 is antisymmetric. Looking at the nontriviality
condition (1.21), one may check that14

𝜈 = sgnPf (𝐴𝑘=0) sgnPf (𝐴𝑘=𝜋) (1.25)

is the appropriate definition for the topological invariant. (The same invariant may also be
written in Chern-Simons form as an integral over the BZ involving the Berry connection [29],
but the above form has the advantage of being manifestly gauge invariant.) It is quite easy
to argue that this is a topological property on the grounds that it cannot change unless the
gap closes, but showing why 𝜈 = −1 and 𝜈 = 1 differ in the presence or absence of MZMs,
as we have reviewed, required more finesse. This is a theme of Chapter 2, where even
with knowledge of the topological invariants, more work is needed to deduce the nature
of boundary states. Equation (1.24) also determines a key feature of our effective model’s
spectrum in Chapter 3, which is that switching from periodic to anti-periodic boundary
conditions changes the ground state parity in the topological phase.

12The Pfaffian of a 2𝑁 ×2𝑁 antisymmetric matrix 𝐴 is given by

Pf (𝐴) = 1
2𝑁𝑁!

∑︁
𝜎∈𝑆2𝑁

sgn(𝜎)
𝑁∏
𝛼=1

𝐴𝜎2𝛼−1 ,𝜎2𝛼 ,

where 𝑆2𝑁 is the permutation group for 2𝑁 elements.
13The canonical form has non-negative elements on the upper diagonal, so its Pfaffian is positive.
14An odd 𝐿 is always the sum of an odd and even number, whereas an even 𝐿 is composed of two even or two

odd numbers.
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Two Dimensions

MZMs can also appear in 2D superconductors with 𝑝𝑥 + 𝑖𝑝𝑦-wave pairing [30]. In 2D Class D
superconductors, the topological invariant is the Chern number (1.3), where ‘occupied’ states
are negative-energy BdG states. Like in the IQHE, a nonzero Chern number is associated
with chiral edge modes. A minimal continuum model is a two-band Dirac Hamiltonian

H(k) = 𝑘1𝜎1 + 𝑘2𝜎2 +𝑚𝜎3 ≡ 𝒉k ·𝝈, (1.26)

which is a good low-energy description near most gap closings. This evidently has PH
symmetry Ξ =K𝜎1 (but not TR symmetry). Its spectrum easily follows from the anticom-
mutation relations {𝜎𝑖, 𝜎𝑗 } = 2𝛿𝑖 𝑗 , giving 𝐸2(k) = |𝒉k |2 which has a gap closing at 𝑚 = 0.
Provided |𝑚 | > 0, its wavefunctions are determined (up to a gauge choice) by the unit vector
�̂�k ≡ 𝒉k/ℎk. The Berry curvature is then Tr{F } = (−𝑖/2) �̂�k · 𝑑 �̂�k × 𝑑 �̂�k which we may
interpret as the solid angle traced out by �̂�k over a small patch of momenta [10]. We cannot
integrate (𝑖/2𝜋)

∫
BZ Tr{F } over a compact manifold to give an integer, however, because

Eq. (1.26) is a continuum model without a lattice or BZ. Instead, the closest we have is

Ch =
𝑖

2𝜋

∫
ℝ2

Tr{(F )} = 1
2

sgn𝑚. (1.27)

Thus, the Dirac Hamiltonian can be used to describe only topological phase transitions of
ΔCh = ±1 by taking 𝑚→−𝑚. This is tied to the band structure approximation (1.26) only
being valid in an isolated patch of the BZ, whose |k| →∞ behaviour would be regularised by
a lattice. If 𝒉k did originate from a lattice model, Ch ≠ 0 would obstruct finding a smooth
gauge for wavefunctions throughout the BZ.

We can deduce the presence of chiral modes at interfaces of topologically distinct Dirac
Hamiltonians through what is known as the Jackiw-Rebbi approach [31]. This finds mid-gap
eigenmodes of the Schrödinger equation for Eq. (1.26) slowly undergoing a band inversion in
real-space with 𝑚 = 𝑚(r). It can also deduce MZMs at interfaces in 1D, complementing the
previous subsection. We use the results of such an approach extensively in Chapter 2 (and to
a lesser extent in Chapter 3) when we quote the spectra of effective boundary Hamiltonians.
Appendices A.2.2 and B.1 demonstrate this approach in action and are self-contained, so
serve the purpose of an introduction.

The resulting edge states are called chiral Majorana modes, which we depict in Fig 1.3,
but they are not inherently MZMs because that further requires zero energy. They disperse as
𝐸 (𝑘 ∥) ∝ 𝑘 ∥ , where 𝑘 ∥ is the momentum along the boundary, but 𝑘 ∥ is quantised according
to the geometry of the boundary. Hence, MZMs will not occur in a simple circular sample
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Fig. 1.3 A figure showing a 2D Dirac model shaped as an annulus with inner and outer radii
𝑅in and 𝑅out, respectively. The annulus and surrounding material have mass terms of opposite
sign, so the bulk Hamiltonian has a gap closing at the edges, leading to chiral edge modes
whose dispersions are shown on the right. The annulus may be threaded by a flux Φ which
modifies the boundary conditions of fermions traversing the edges so that edge momentum
is quantised as 𝑘 ∥ = (2𝑛+ 1+Φ/Φ0)/2𝑅𝑖 with 𝑛 ∈ ℤ. When Φ is an even multiple of the
flux quantum Φ0 = ℎ/2𝑒, there are states with 𝐸 (𝑘 ∥ = 0) = 0 localised on the inner and outer
edges that are MZMs, provided that they are far enough apart not to hybridise.

of 𝑝𝑥 + 𝑖𝑝𝑦 superconductor because fermions on the boundary obey antiperiodic boundary
conditions [30, 23]. The boundary conditions can be modified through a magnetic field,
however, such as by threading an annular sample (referred to as a Corbino disc), as in Fig. 1.3
with ℎ/2𝑒 flux. Then, Majorana modes with opposite chirality form on the inner and outer
edges that do intersect 𝐸 = 0, giving two MZMs. The same argument may be used to conclude
that vortices in a type-II 𝑝𝑥 + 𝑖𝑝𝑦 superconductor (from a penetrating flux) bind localised
MZMs [30, 32].

1.1.4 Crystalline Symmetry Enriched Topological Classification

Even though it may sound from Sec. 1.1.1 as if equilibrium topological classification of every
possible non-interacting fermionic Hamiltonian is complete, restricting oneself to only three
symmetries often fails to capture all possible topological features of a system, however. This
is because realistic systems may also possess other unitary symmetries which can lead to an
even richer classification. Most notable are crystalline symmetries, inherited from how the
ions are stably arranged in space. One expects a radical change to the map of equivalence
classes because adding a symmetry requirement will forbid certain Hamiltonians entirely,
and of the Hamiltonians that remain after this purge, previous symmetry- and gap-preserving
interpolations between them may become disallowed, fracturing the original equivalence
classes. (This is analogous to the diversification of SRE states into SPT phases that was
mentioned in Sec. 1.1.) We will soon present a more grounded view of this enrichment,
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where a unitary symmetry block-diagonalises the single-particle Hamiltonian so that each
block (or pair of blocks) must be characterised by their own invariants.

The most obvious crystalline symmetry to include is translational symmetry, leading to
what are called weak topological phases [9]. Whereas the surface states of strong topological
phases (those with AZ symmetries) are robust to disorder, charge-density-wave perturbations
can gap out the surfaces of weak topological phases, as we see in action in Chapter 2. The
search for new types of topological phases has since expanded to all symmorphic [33, 34]
and nonsymmorphic [35] space group symmetries.

As well as enriching classification, crystalline symmetries can also simplify the calculation
of tenfold-way invariants, as is famously the case with the Fu-Kane parity criterion [36] in
inversion-symmetric TIs. We shall rediscover another such example in Chapter 2 for the Chern
number modulo a small integer. In these cases one can avoid integrating Bloch wavefunctions
over the whole BZ when calculating invariants such as Eq. (1.3), which numerically would
require a sufficiently dense mesh of k points. Modern classifications of topological crystalline
systems take this idea further by defining invariants that have no tenfold-way counterparts,
quantised only by virtue of the crystalline symmetries.15

Unfortunately, obtaining the full classification with crystalline symmetries is, understand-
ably, much more difficult. It requires the generalisation of K-theory to so-called equivariant
K-theory [38–40] and although this formalism has been increasingly developed, the full
classification for all space groups and AZ classes is yet to be completed. Furthermore, this
mathematical framework is abstracted from familiar physical concepts and does not always
provide calculable invariants. In the meantime, efforts have been made to bridge between the
full classification and more accessible features of the band structure [38], with great progress
made by favouring ease of calculation over exhaustivity.

The current approach to classifying topological crystalline insulators is to systematically
determine whether there is an obstruction to deforming the ground state into a product state
of exponentially localized Wannier functions at atomic sites (filled atomic orbitals) [41].
There are often many mutually distinct arrangements of such Wannier functions at atomic
sites compatible with the same crystalline symmetry that all count as trivial. Stable topology
implies an obstruction of this kind, but the converse may not be true: systems with an
obstructed atomic limit may possess only fragile topology [42]. A set of bands has fragile
topology if it is strictly inequivalent to some trivial bands, but made strictly equivalent if we
allow for adding some trivial bands below the Fermi energy.16 Fragile topological systems

15In fact, even the ℤ2 Fu-Kane invariant may be promoted to a ℤ4 invariant with inversion symmetry [37].
16Even fragile topology has to persist upon adding trivial bands above the Fermi energy if it is to be a

physically reasonable definition because any bounded tight binding model can never include all the high energy
orbitals; moreover, such bands do not change the many-body ground state. This also distinguishes fragile
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are not expected to have protected gapless boundary states because the bulk topology can
be trivialised by adding atomic insulators with gapped boundaries; instead, their signatures
are more subtle [44] and are still an open question. We will not encounter fragile topology
later in this thesis, so it is mentioned in this section only for context. Even the bulk-boundary
correspondence for stable topological crystalline systems is less robust than in the tenfold way
because the boundary itself must also respect the crystalline symmetries, and nonsymmetric
boundaries are generically gapped [45, 46].

Two methods have emerged as ways to efficiently determine whether a band structure is
topological, but (as well as in how they are calculated) they differ in whether the topology
they diagnose is stable or not. The workhorses in both methods are the crystalline symmetry
representations at high-symmetry points (HSPs) in the BZ. One method uses ‘split elementary
band representations’ [47] to diagnose (possibly fragile) topology, where determining the
connectivity of the band structure from the irreducible representations at HSPs can be
efficiently mapped to a graph-theoretic problem [47].17 The other method using symmetry
indicators [48] diagnoses stable topology by construction, but misses out on certain topological
phases by putting them in the same category as trivial atomic insulators. It is the symmetry
indicator approach (generalised to superconductors) that we utilise in Chapter 2, so warrants
more discussion.

Symmetry Indicators for Band Topology

Symmetry representations have always played a large role in band theory, and we now
outline a way that they relate to topology [41]. The information fed into this classification
scheme, once the crystalline and fundamental symmetries are specified, will be the symmetry
representations at HSPs in the BZ. Clearly this is much less information than the full bundle
of Bloch wavefunctions throughout the BZ, so the classification will be only a ‘snapshot’ of
the full one, but a useful one nonetheless. The starting point will be a set of band labels at
the HSPs, which will later define a (quasi-)vector space of crystalline topological phases.

Start with a Bloch HamiltonianH(k) which has symmetry group 𝐺. We generally care
about only the point group elements of 𝐺 because translations just give phases for the Bloch
states. There is a projective representation𝑈𝑔 (k) for 𝑔 ∈ 𝐺 such that

H(k) =𝑈𝑔 (k)H (𝑔k)𝑈†𝑔 (k), (1.28)

topology from Hopf insulators, which rely on nontrivial mappings between certain spaces, e.g. two-band
insulators in 3D without symmetries that should be trivial according to the tenfold way [43].

17That this method cannot guarantee stable topology was noticed later as the concept of fragility was
introduced [42].
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where 𝑈𝑔 (k) is a unitary matrix.18 This representation is ‘projective’ because the transfor-
mation rule (1.28) determines 𝑈𝑔 (k) only up to a phase factor. These phases can be made
consistent only up to a sign [49] which defines the factor system

𝑈𝑔 (k)𝑈𝑔′ (k) = 𝑧𝑔𝑔′𝑈𝑔𝑔′ (k), 𝑧𝑔𝑔′ = ±1. (1.29)

The factor system 𝑧𝑔𝑔′ = 1 occurs when there is spin rotation symmetry, and is labelled the
‘spinless’ case because spatial rotation (which also acts on spin) could be combined with a
pure spin rotation in the other direction to render it effectively spinless [50]. The other case
is relevant for ‘spinful’ systems, such as those with spin-orbit coupling. One way around
needing a factor system is to not start with projective representations of the space group
in the first place, and instead non-projectively represent a double-covered space group �̃�
which also features total fermion parity �̂� as a group element. This is because, fundamentally,
every electron acquires a Berry phase of 𝑒𝑖𝜋 under 2𝜋 rotation. This is the approach that we
take in Chapter 2 where, because we are dealing with a spinful system, a 2𝜋 rotation has
representation −𝟙, which influences the rest of the analysis.

The symmetry relation at certain points in the BZ is special. HSPs, ks, are momenta that
are mapped to themselves under some (non-translational) elements of 𝐺 modulo a reciprocal
lattice vector G, i.e., 𝑔ks = ks +G, shown for an example space group in Fig. 1.4 (𝛾). Thus,
at HSPs we have

H(ks) =𝑈𝑔 (ks)H (ks)𝑈†𝑔 (ks) (1.30)

for some point group elements 𝑔 belonging to the nontrivial little group 𝐺ks ⊂ 𝐺 of ks (also
called the stabiliser subgroup). Suppose that |𝜓𝛼 (ks)⟩ is an energy eigenstate ofH(ks) with
energy 𝐸ks , degenerate with (𝑑 − 1) other states so that 𝛼 = 1, . . . , 𝑑 labels the degenerate
subspace. Since𝑈𝑔 (ks) commutes withH(ks) for 𝑔 ∈𝐺ks , it must map degenerate eigenstates
to each other as

�̂�𝑔 (ks) |𝜓𝛽 (ks)⟩ =
∑︁
𝛼

[𝑢𝑔 (ks)]𝛼𝛽 |𝜓𝛼 (ks)⟩. (1.31)

The unitary matrices 𝑢𝑔 (ks) satisfy the same relations as Eq. (1.29), so furnish a 𝑑-dimensional
representation of 𝐺ks . Unless the degeneracy is accidental, 𝑢𝑔 (ks) is an irreducible repre-
sentation (irrep). There can be 𝑛 distinct irreps 𝑢𝑖𝑔 (ks) of the same little group, each being
𝑑𝑖 (ks)-dimensional. Any representation of𝐺ks can be decomposed as the direct sum of irreps

18Promoting this representation for normal Hamiltonians to one for BdG Hamiltonians further requires
knowing how the superconducting pairing term Δ(k) behaves under symmetry, but we save this discussion for
when we encounter it in Chapter 2. Similarly, the origin of the momentum dependence of𝑈𝑔 (k), namely the
translational component of 𝑔, is saved until then because it is most easily seen through example.
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Fig. 1.4 Real- and momentum-space representations of the wallpaper group p2mm. This
space group features two perpendicular mirror planes and 𝐶2 rotation symmetry about the
out-of-plane axis. Its maximal Wyckoff positions (i.e., HSPs in real space) {a, b, c, d} are
shown in (𝛽). Atomic limits are constructed by placing filled orbitals [such as those shown
in (𝛼)] at the these positions in various symmetric combinations. These orbitals furnish
representations of the dihedral point group 𝐷2 which get transformed into momentum-space
representations. (𝛾) shows the BZ for the lattice, along with its HSPs and a mirror symmetric
line 𝚺 referenced later.

{𝑢𝑖𝑔 (ks)} with multiplicities {𝑁𝑖 (ks)}, so the most general symmetry representation is

𝑈𝑔 (ks) ≃ diag [𝑢1
𝑔 (ks) ⊗ 𝟙𝑁1 (ks) , . . . , 𝑢

𝑛
𝑔 (ks) ⊗ 𝟙𝑁𝑛 (ks)], (1.32)

with “≃” allowing for a similarity transformation. The total dimension
∑𝑛
𝑖=1 𝑑𝑖 (ks)𝑁𝑖 (ks)

is constant throughout the BZ because it counts the number of orbitals in the unit cell.
Antiunitary symmetries such as TR also interact with the unitary space group representations
(e.g., by mapping one irrep to another because they involve complex conjugation), but we
encounter only PH symmetry in Chapter 2. For superconductors, one combines separate
irreps for the particle and hole sectors to form a larger representation for the BdG Hamiltonian,
but we stick to normal Bloch Hamiltonians for now.

The foundation of symmetry indicators is the classification of everyH(ks), which are
zero-dimensional Hamiltonians possessing unitary symmetries specified by 𝐺ks on top of
fundamental (TR, PH or chiral) symmetries. The multiplicity of the irreps immediately
present themselves as candidates for being topological invariants, which we illustrate by
example in Figure 1.5. Here we consider two HSP Hamiltonians H0(𝚷), H1(𝚷) and a
symmetric adiabatic interpolation between themH𝑡 (𝚷). We count the multiplicities of the
irreps of occupied states (those below the Fermi energy), labelled by #Π𝑖 ≤ 𝑁𝑖 (𝚷), to form a
“vector”19 n𝑡 = [#Π1, . . . , #Π𝑛]𝑇 . Crucially, if the vectors n0 and n1 are different, then there

19Being integer-valued, n isn’t technically a vector, but our intuition for vector spaces will still hold up well.
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Fig. 1.5 A diagram showing the symmetric deformationH𝑡 (𝚷) between two HSP Hamiltonians
with different irreps. Because the multiplicities of the occupied irreps #Π1, #Π2 do not match
on either side, energies must cross the Fermi energy 𝐸F at some point and the underlying
band structures for 𝑡 = 0 and 𝑡 = 1 cannot be in the same topological phase.

must be no way to adiabatically connectH0(𝚷) andH1(𝚷) without closing the gap. This
follows because 𝐺𝚷 is preserved throughout and𝑈𝑔, 𝑡 (𝚷) must change adiabatically. The first
step for classification through symmetry indicators, therefore, is to construct a large vector
of band labels for multiplicities of occupied irreps at all representative20 HSPs in the BZ.
One may add and subtract whole multiples of these vectors to move around in a ℤ𝑑BL “vector
space” corresponding to a group of band labels {BL}. In superconductors, there may also be
Pfaffian invariants definable at PH-invariant momenta, but in Chapter 2 these are expressible
in terms of the irrep band labels.

As it stands, the dimension 𝑑BL of this space of band labels is much too large because
HSPs do not exist in isolation, and the symmetry representations at different points have
to satisfy certain compatibility relations depending on the symmetry group. As one moves
infinitesimally away from a HSP ks in a certain direction to ks + 𝛿k, some symmetries may
be broken 𝐺ks → 𝐺ks+𝛿k ⊆ 𝐺ks , which lifts degeneracies. For the symmetries �̃� ∈ 𝐺ks+𝛿k
that remain, however, the representations 𝑈�̃� (ks + 𝛿k) must be compatible with the irreps
𝑢�̃� (ks). We say that 𝑈�̃� (ks + 𝛿k) is ‘subduced’ from 𝑢�̃� (ks), written 𝑢�̃� (ks) ↦→𝑈�̃� (ks + 𝛿k).
Consequently, for the Hamiltonian to remain gapped along a line Σ from one HSP k1 to
another inequivalent HSP k2, any band labels definable on Σ (due to a nontrivial little-group
𝐺Σ) have to remain continuous as one approaches both k1 and k2. This defines a compatibility
relation between the band labels at HSPs k1 and k2. We show this in action for an example
wallpaper group (i.e., two-dimensional space group) in Fig. 1.6. Hence, not all elements
of {BL} are self-consistent, and we must reduce the space to valid gapped band structures,
denoted by {BS} ≃ ℤ𝑑BS . In practice this is done by expressing compatibility relations as a

20We say ‘representative’ because if there exists an element 𝑔 ∈ 𝐺 for which k1 = 𝑔k2, then k1 and k2 have
conjugate little groups, and any information at k2 is already contained in the irrep content of k1. Some schemes
also lump this restriction in with the ‘compatibility relations’ (defined below), but we consider them separately.
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Fig. 1.6 An example of how compatibility relations dictate which band labels are valid
gapped band structures for the wallpaper group p2mm. (a) The spinless one-dimensional
irreps for the dihedral group 𝐷2 and the cyclic group 𝐶2. In moving from 𝚪 or X along the
mirror-symmetric line 𝚺 (see Fig. 1.4), the little group 𝐷2 is reduced to a subgroup 𝐶2. The
representations must agree for the symmetry element 𝑀𝑦 left unbroken. In (b) and (c) we test
whether the band labels at 𝚪 and X are consistent with two isolated bands below the Fermi
level. The band labels in (b) pass this test, but in (c) the irreps 𝑋2 and Γ4 subduce to different
representations along 𝚺 so they cannot belong to the same band.

linear constraint 𝐶n = 0 for some matrix 𝐶, and considering only the null space of 𝐶. (Here
is where ‘topological quantum chemistry’ [47] departs from the symmetry indicator approach
by using a graph-theoretic approach to solve the compatibility relations instead.) Despite
their general importance, we won’t have any high-symmetry lines or compatibility relations
in Chapter 2 because we deal only with rotation symmetry in 2D, and hence {BS} = {BL}
there.

Naturally, the symmetry representations 𝑈𝑔 (k) above arise from Fourier-transforming
real space symmetry operations of 𝐺, which we show in detail in Sec. 2.2.1. Since one seeks
a stable classification, a special role is played by the band label vectors a of atomic insulators,
which follow from placing filled orbitals at symmetry-allowed Wyckoff positions [51] as
shown in Fig. 1.4 (𝛽).21 This role is to define a subspace spanned by the vectors {a 𝑗 } (which
may not be linearly independent) corresponding to a subgroup {AI} ≃ ℤ𝑑AI of {BS} that we
consider topologically trivial. Note that because {AI} allows for the addition or subtraction
of vectors a 𝑗 , an element a ∈ {AI} may have negative band label integers #Π𝑖 which would
immediately prevent us from interpreting its components as occupied irrep multiplicities of a
physical atomic insulator. This arises because adding vectors is implemented through stacking,
but subtraction has no such direct physical procedure. In fact, even all the components being

21Like we saw in momentum space, some positions x in the real space unit cell are invariant under the action
of a non-trivial group 𝐺x ⊂ 𝐺 called its site-symmetry group (or stabiliser group). Such a point x is in the orbit
of another, x′, if they are related by 𝑔x = x′ for some 𝑔 ∈ 𝐺, from which it follows that their site-symmetry
groups 𝐺x and 𝐺x′ are conjugate. Points with conjugate site-symmetry groups are said to be in the same
Wyckoff position.
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positive is not enough to guarantee that a can be realised by stacking atomic insulators,
because it may be the ‘difference’ of two atomic insulators, as in a fragile topological phase.
Nevertheless, we get the stable ‘symmetry indicator’ classification group by constructing the
quotient

{SI} = {BS}
{AI} , (1.33)

which guarantees that systems mapping to distinct elements of {SI} are not deformable into
each other even when allowing stacking with atomic insulators. It can be shown [48] that the
resulting group structure is always finite (even for superconductors [49, 52]):

{SI} ≃ ℤ𝑠1 × ℤ𝑠2 × . . . × ℤ𝑠𝑑BS
(1.34)

with positive integers 𝑠𝑖 and 𝑑BS = 𝑑AI. The group is nontrivial if any 𝑠𝑖 > 1. Assigning a
vector n to an element in {SI} can be done very efficiently as a linear algebra problem once
the basis vectors {a 𝑗 } for atomic insulators in the appropriate symmetry class are known.

Evidently the finite group {SI} cannot always coincide with the true stable topological
classification group because we have already encountered phases labelled by an unbounded
ℤ-valued Chern invariant. What symmetry indicators can do, therefore, is quickly diagnose if
a system is gapped at HSPs and incompatible with an atomic description, which is valuable to
high-throughput searches for topological materials [53–55]. This requires further validation
to rule out accidental crossings at nonsymmetric points in the BZ. For this reason, in Chapter 2
we do not take the final step of constructing the quotient group as in Eq. (1.33) because a
provably complete set of stable invariants are available for our particular symmetry class.
This combines a set of linear combinations of band labels {#Π𝑖} with the Chern number
(1.3), which were shown to classify the band structure over the whole BZ for Class D
superconductors with rotational symmetry [56]. We then use these invariants to derive a
bulk-boundary correspondence.

Above, we alluded to differences when extending symmetry indicators to superconductors,
which was achieved iteratively over many studies owing to its increased difficulty [57,
58, 52, 59, 49]. The biggest conceptual difficulty is properly defining an ‘atomic limit’
superconductor, which is necessary for a classification that works beyond the weak-pairing
limit. (In the weak-pairing limit the insulator invariants work just as well for a superconductor
because the eigenstates of the BdG Hamiltonian are directly related to the eigenstates of
the normal diagonal part.) The proper ‘atomic limit superconductor’ is one whose pairing
can be switched off Δ̂→ 0 without closing a gap such that the resulting insulator is in its
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atomic limit [59].22 Trivial superconductors are adiabatically connected to the ‘atomic limit’
superconductor as usual. The trivial group may be equally viewed as being generated by
arrays of 0D BdG Hamiltonian symmetrically placed at Wyckoff positions [49]. Deriving the
symmetry-indicated classification group then follows the principles above, with additional
enrichment due to the nontrivial symmetry representations possible for the pairing term Δ̂.

1.1.5 Higher-Order Topology

Topological crystalline insulators and superconductors are particularly interesting because
they can display an entirely new kind of bulk-boundary correspondence due to higher-order
topology. The gapless states we have introduced thus far have been on codimension-one
submanifolds of conventional topological systems. Systems with 𝑛-th order topology, on the
other hand, have gapless states on manifolds of codimension 𝑛 allowed to be greater than one,
as shown in Figure 1.7. These may be thought of as globally irremovable surface topological
defects of dimension 𝑑−𝑛 [61]. Typically, the stability of a 𝑑−𝑛 dimensional defect is given
by its tenfold way classification [62], depending only on 𝛿 = 𝑑 −𝑛+1 and its AZ symmetry
class. However, a nontrivial defect classification on its own is not enough to generically
protect anomalous gapless surface states because, on a sphere, topological defects can always
be removed. For example, on the surface of a (smoothed out) 3D slab, like in Figure 1.7,
a line defect can be shrunk down to a point, while point defects—which always come in
pairs—can be brought together and annihilated [61]. Such processes could be obstructed by
the right spatial symmetry (e.g. inversion symmetry forcing point defects to be antipodal),
hinting that crystalline symmetries are crucial for the protection of higher-order topology.

This raises an important point: the presence of gapless states with codimension 𝑛 > 1 is
insufficient to conclude that the bulk has higher-order topology. Indeed, there are systems
without crystalline symmetries that ostensibly fit the definition for higher-order topology, such
as 3D TIs penetrated by an arbitrarily orientated magnetic field [63, 64], which have hinge
modes like those in Figure 1.7. Although stable up to continuous deformations preserving
the bulk and surface gaps, their gapless hinges disappear upon being exchange coupled to
a ferromagnetic insulating film. In such examples, the system has “extrinsic” higher-order
topology attributed to the boundary being nontrivial, whereas the bulk is trivial [46]. By
contrast, the “intrinsic” classification puts crystals that differ only by their lattice termination
in the same topological class. A nontrivial intrinsic classification requires spatial (or
spatiotemporal [65]) symmetries, and it is this termination-independent classification we

22The link to a physical state is inevitably less direct for superconductors, but topology is encoded in the
long-distance behaviour of the Cooper pair wavefunction [30, 60]: decay is exponential if trivial and algebraic
if topological.
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Fig. 1.7 A cartoon showing the codimensionality of gapless surface states. In 2D there can
be gapless edges (𝑛 = 1) or corner modes protected by rotational symmetry (𝑛 = 2). In the
3D example there can be gapless surfaces (𝑛 = 1), hinges protected by inversion symmetry
(𝑛 = 2) or corners protected by mirror symmetries (𝑛 = 3).

are interested in. Even for intrinsic higher-order topological phases, the precise form of the
anomalous boundary states may depend on how the lattice is terminated (such as in Chapter 2,
where “corner modes” can be moved away from corners), but their existence is ensured by
the bulk topology so long as the boundary respects the appropriate point group symmetry.

Since its initial discovery [65–69], higher-order topology has been found in many different
settings, sometimes manifesting in other ways beyond mid-gap states. In each setting,
establishing the higher-order bulk-boundary correspondence requires invariants beyond
the tenfold way that are yet to be unified. For example, topological insulators with non-
commuting mirror symmetries can have quantised multipole moments due to fractional ± 𝑒2
corner charges [67, 68]. Here, just as the dipole can be formulated in terms of the Berry
phase [70], the quadrupole and octupole moments are calculated through so-called ‘nested’
Wilson loops [67] over subspaces in the BZ, which become quantised bulk invariants in
the presence of spatial symmetries. One may also find fractional 𝑒

𝑛 corner charges in 2D
𝐶𝑛-symmetric insulators without multipole moments or in-gap states [71], again linked to a
topological index (that is ‘secondary’ because it requires the primary index—the polarisation—
to vanish).23 This index is expressed in terms of symmetry indicators, which find wider use in
diagnosing higher-order gapless states [37] and are used for our second-order bulk boundary
correspondence for 2D superconductors in Chapter 2. In our setting the second-order gapless
states will be 0D MZMs.

23The fractional charge here is the result of a filling anomaly, a mismatch between the number of ionic sites
and the number of electrons needed to maintain rotational symmetry. For Wannier-representable phases this
happens when Wannier orbitals lie on the corner of a unit cell [71]. This is a scenario we exclude in Chapter 2
because the classification scheme we use does not apply, as outlined in Appendix A.1.
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1.2 Practical Aspects of Topological Superconductors

Realising MZMs is especially difficult because no superconducting materials have been
found to be innately topological. The vast majority of superconductors pair electrons
with opposite spin through 𝑠-wave pairing, leading to quasiparticles of the form �̂� ≈
𝑢𝑐†↓ + 𝑣𝑐↑ that are hopelessly distinct from �̂�†. (Even strontium ruthenate Sr2RuO4, once the
leading candidate for 𝑝-wave superconductivity [23], now seems to host a different type of
unconventional superconductivity [72–74].) Experiments therefore turn to more artificial
routes of inducing topological superconductivity using conventional superconductors. One
promising experimental avenue for MZMs in 1D systems was the nanowire construction [75,
76] that was the subject of hundreds of subsequent papers. Despite some experimental groups
implementing this construction and claiming observations consistent with MZMs [77, 78],
the landmark result [79] was later spectacularly retracted [80], and concerns about related
experiments persist. The approach is to induce 𝑝-wave superconductivity in a semiconducting
nanowire through the proximity effect of an adjacent 𝑠-wave superconductor, which also
requires strong spin-orbit coupling and a modest magnetic field. The motivation for these
ingredients remains the same for other experimental proposals, which is to break all the
symmetries (i.e. spin-rotation and time-reversal) that otherwise lead to MZMs having local
degenerate partners.

Even after creating a topological superconductor, experimentally demonstrating its
nontriviality is another challenge. Some difficulties are due to unwanted physical processes;
for example, we saw in Sec. 1.1.3 that parity conservation is key to the phenomenology of
topological superconductors, so it is crucial to mitigate ‘quasiparticle poisoning’, whereby
fermions tunnel into or out of the system and cause transitions between (degenerate) states
with different parity [81, 24].24 The small proximity-induced topological gap also makes
the system generally susceptible to stray terms in the Hamiltonian. The other difficulty is
passing the most stringent tests for ‘smoking gun’ signatures of topological superconductivity.
In early MZM experiments, the aim was to a find quantised zero-bias conductance peak
in the tunnelling spectroscopy [83, 84], which is a local probe for MZMs that is easier
than demonstrating non-Abelian exchange statistics through braiding. It has since been
shown that these local probes can be mimicked [85] by topologically trivial ‘quasi-Majorana’
states that are instead pairs of near-zero energy Andreev bound states [86].25 Modern focus

24Some hence prefer to prefix “topological phase” with “fermion-parity-protected” in these systems [82].
25These states occur when the confining potential is sufficiently smooth (similar to the nontopological

boundary states that motivate our sharp mass inversion limit in a different setting in Sec. 3.4.1). The tunnelling
amplitudes for the two quasi-Majoranas differ drastically because the effective tunneling barriers they experience
are different (either from being oppositely spin-polarised [85] or partially separated [87]), which mimics the
signal that would result from probing one side of a topological wire hosting two spatially separated MZMs.
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has therefore shifted to more robust probes of topological superconductivity going beyond
measuring individual MZMs. One strategy is to look for signs of a bulk topological phase
transition [88–90] (rather than boundary states), while another is having the non-locality and
statistics of multiple MZMs manifest in a way that does not require physical braiding. Some
approaches adopting the latter strategy include the topological Kondo effect [91], where
MZMs play the role of a spin impurity that couples to conduction electrons in the leads, and
a recent weak measurement protocol [92] that encodes topological nontriviality in the shot
noise of current cross-correlations. The cornerstone of both approaches is the exploitation of
charging energy in mesoscopic superconductors, which forms a “Majorana-Cooper box” that
is finding increasing utility in the field [93]. We next outline the basic physics of charging
energy in superconductors since it forms the basis of our investigations in Chapter 3.

1.2.1 Charging Energy in Mesoscopic Superconductors

Utilising charging energy in platforms for topological superconductivity is proving fruitful for
both theory and experiment [93]. The relevance of this term stems from the small dimensions
of constituent superconductors, which leads to small capacitances and hence a large energy
associated with adding or subtracting electrons. Consequently, it can lift the degeneracy of the
even and odd parity ground states that we encountered in Sec. 1.1.3 in potentially advantageous
ways. For example, Coulomb effects can be baked in to topological quantum computation
schemes to guard against quasiparticle poisoning [94], or directly braid MZMs [95, 96]. By
adding onsite charging energy to higher-order topological superconductors, one may even
generate topologically ordered stabiliser codes [97]. The tools for treating charging energy
are borrowed from circuit quantum electrodynamics (QED), which is the study of quantised
electrical circuits that incorporate phenomenology associated only with superconductors,
namely the Josephson effect [98].26 In Chapter 3, we consider how charging energy affects a
system where the superconducting phase controls the topology. This ingredient is present
in modern planar Josephson junction platforms for MZMs [100, 101] which have been
constructed experimentally and reported to pass local tunnelling probe tests for topological
superconductivity [102, 103]. When adding charging energy to such systems, the low-energy
spectrum shares common features with the simpler system of a Josephson junction sitting in
parallel with a capacitor, known as the Cooper pair box (CPB).

26Circuit QED is itself of immense current interest because it is the basis of superconducting qubits famously
used by Google [99] and IBM. The term was chosen for its similarity to ‘cavity QED’, since one may engineer
discrete energy levels to form an artificial atom—as we soon see—which may be strongly coupled to the
electromagnetic field through a microwave resonator [98].
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The Cooper Pair Box

The features of the CPB are best contrasted with the quantum version of the familiar LC
oscillator [104]. Consider an inductor in parallel with a capacitor, and recall that (linear)
inductance and capacitance are defined through 𝐿 = Φ/𝐼 and 𝐶 = 𝑄/𝑉 , respectively. The
energy stored in a given component is given by 𝐸 (𝑡) =

∫ 𝑡

−∞ 𝑑𝑡
′𝑉 (𝑡′)𝐼 (𝑡′), where the branch

current 𝐼 and voltage 𝑉 are assumed to be zero in the distant past [105]. It is convenient to
rephrase these in terms the flux Φ threading the inductor and the capacitor’s charge𝑄 through
Faraday’s law Φ(𝑡) =

∫ 𝑡

−∞ 𝑑𝑡
′𝑉 (𝑡′) and charge conservation 𝑄(𝑡) =

∫ 𝑡

−∞ 𝑑𝑡
′ 𝐼 (𝑡′). Performing

the energy integral for both components then neatly gives the total system energy

H𝐿𝐶 =
𝑄2

2𝐶
+ Φ

2

2𝐿
. (1.35)

Combining the above relations shows that Φ and 𝑄 are canonically conjugate variables.
Following Dirac’s principle, we quantise these by associating the Poisson bracket with a
commutation relation between operators:

{Φ, 𝑄} = 1 → [Φ̂, �̂�] = 𝑖ℏ. (1.36)

The Hamiltonian (1.35) is then of course the quantum Harmonic oscillator with equally
spaced eigenvalues 𝜖𝑛 = ℏ𝜔(𝑛+ 1

2 ) and 𝜔 = 1/√𝐿𝐶.
In a CPB, the inductor is replaced by a Josephson junction which acts as a nonlinear

inductor. The major difference comes from the Josephson relations [106] which govern the
dissipationless current flowing between two superconducting electrodes separated by a thin
insulating barrier. Firstly, the supercurrent is given by

𝐼 = 𝐼c sin𝜙, (1.37)

where 𝜙 is the difference between superconducting phases Δ𝑒±𝑖𝜙/2 on both sides of the
junction, and 𝐼c—a property of the junction—is the critical current. (In the regime beyond 𝐼c,
which we do not enter, Cooper pairs break down and the current becomes resistive [107].)
Secondly, a voltage 𝑉 across the junction gives time dependence to the phase difference:
¤𝜙 = 2𝜋

Φ0
𝑉 , where Φ0 = ℎ/2𝑒 is the flux quantum, or equivalently

𝜙 =
2𝜋
Φ0

Φ (1.38)
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in terms of the flux. [By combining Eqs. (1.37) and (1.38), one can define a nonlinear
inductance as 𝐿J(Φ) = (𝜕𝐼/𝜕Φ)−1 when below the critical current.] The energy stored in the
Josephson junction due to coherent tunnelling of Cooper pairs is hence

𝐸 (𝑡) =
∫ 𝑡

−∞
𝑑𝑡′𝑉 (𝑡′)𝐼 (𝑡′) = 𝐼c

∫ 𝑡

−∞
𝑑𝑡′

(
𝑑Φ
𝑑𝑡′

)
sin

(
2𝜋
Φ0

Φ

)
= −𝐸J cos

(
2𝜋
Φ0

Φ

)
, (1.39)

defining 𝐸J ≡ Φ0𝐼c/2𝜋 to be the Josephson energy. Again, charge 𝑄 is conjugate27 to the
flux Φ, which provides a route to quantisation, but we instead express it in terms of the phase
difference 𝜙 and the number of paired electrons on the island 𝑁 =𝑄/𝑒.28 We therefore arrive
at the fundamental charge-phase uncertainty relation

[𝜙, �̂�] = 2𝑖. (1.40)

The operator 𝑒𝑖𝜙 hence adds a Cooper pair to the island. We also attach a voltage source
and capacitance as shown in Figure 1.8 (a) to act as a non-integer offset charge for the
superconducting island; in real systems this may be due to a deliberate voltage bias or spurious
“charge noise”. After accounting for this offset, the quantised CPB Hamiltonian is

�̂� = 𝐸C(�̂� −𝑁g)2−𝐸J cos𝜙, (1.41)

where 𝑁g =𝐶g𝑉g/𝑒 ∈ℝ and 𝐸C = 𝑒2/2(𝐶Σ +𝐶g) is the charging energy [104]. We intuitively
view this as the combination of a potential term −𝐸J cos (𝜙) at odds with a kinetic energy
term (�̂� −𝑁g)2, which endows a particle’s periodic “position” 𝜙 ∈ (−𝜋, 𝜋] with dynamics.
In this analogy 𝐸C is an “inverse mass” for the particle. The Hamiltonian is anharmonic, with
decreasing energy gaps between higher levels [108] visible in Fig. 1.8 (b).

With this anharmonicity comes the hope of individually addressing the two lowest states
of the CPB—an impracticable task for an LC oscillator—which has been developed further
into the successful transmon qubit [108]. The transmon takes the 𝐸J/𝐸C ≫ 1 limit of the
CPB, which is motivated by the typical lack of control over 𝑁g. As seen in Figure 1.9, for
modest 𝐸J/𝐸C the low energy spectrum is strongly influenced by 𝑁g, whereas the influence
weakens for larger 𝐸J/𝐸C. Fluctuations in 𝑁g therefore lead to fluctuations in the qubit
transition frequency and dephasing. This decoherence mechanism is exponentially suppressed
in 𝐸J/𝐸C, which overcomes the algebraic suppression of the anharmonicity, as is desirable
for quantum information. It is the precise dependence of the low-energy spectrum on 𝑁g

(rather than its qubit potential) in the transmon regime that is relevant to our later problem

27The Lagrangian (kinetic energy minus potential energy) isL =𝐶 ¤Φ2/2+𝐸J cos ( 2𝜋
Φ0

Φ) so 𝜕L/𝜕 ¤Φ=𝐶 ¤Φ=𝑄.
28Our convention differs from most circuit QED literature which counts the number of Cooper pairs.
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Fig. 1.8 (a) Lumped circuit diagram for a voltage-biased transmon qubit. The transmon
qubit is a Josephson junction (denoted by a cross) with Josephson energy 𝐸J and intrinsic
capacitance 𝐶J shunted by a capacitor 𝐶S so that 𝐶Σ = 𝐶J +𝐶S, grounded on one side. The
𝐶g and 𝑉g elements provide voltage-biasing. (b) The effective potential 𝜙 for a Cooper
pair box (CPB) compared to an LC oscillator (dotted), along with the lowest energy levels.
Anharmonicity makes the CPB energy gaps progressively smaller than the evenly spaced
𝜔 = 1/√𝐿𝐶 oscillator energies.

in Chapter 3, however. There, we couple the Josephson phase to topological fermions and
explore probability of 𝜙 phase slips encoded in the spectrum.

The low-energy behaviour is qualitatively understood by realising that 𝑁g acts as a
quasi-momentum that alters the boundary condition of the problem [98]. To see this, perform
a gauge transformation with �̂� = 𝑒−𝑖𝜙𝑁g/2 such that

�̂� (�̂� −𝑁g)�̂�† = �̂� =⇒ �̂��̂��̂�† = 𝐸C�̂�
2−𝐸J cos𝜙. (1.42)

This transfers the Hamiltonian’s explicit dependence on 𝑁g to the wavefunction |𝜓⟩ → |𝜓′⟩ =
�̂� |𝜓⟩ instead, which no longer obeys periodic boundary conditions:

⟨𝜙+2𝜋 |𝜓′⟩ = 𝑒−𝑖𝜋𝑁g ⟨𝜙 |𝜓′⟩. (1.43)

In this gauge the “position” 𝜙 is better viewed as a non-compact coordinate describing
a periodic extended cosine potential −𝐸J cos𝜙, while |𝜓′⟩ is a Bloch wavefunction with
momentum 𝑘 = 𝜋𝑁g.29 Conclusions about the 𝑁g spectrum follow immediately by comparison
to the corresponding tight-binding problem. Namely, for 𝐸J/𝐸C ≫ 1 there is minimal

29The fixing of momentum to 𝑁g distinguishes this setup from a truly extended lattice which has infinitely
many degrees of freedom and hence a continuum of momenta and energies.
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Fig. 1.9 The spectrum of the Cooper pair box as a function of the gate bias charge 𝑁g. The
spectrum is periodic under 𝑁g→ 𝑁g +2 since it can be offset by adding a Cooper pair. The
bandwidth of the lowest energy state decreases exponentially with 𝐸J/𝐸C. The analogous
oscillator frequency 𝜔0 ∝

√
𝐸J𝐸C is kept constant in each plot.

dispersion because the particle is well-localised at the bottom of the potential wells, which
makes the modified boundary condition almost irrelevant. The processes that do involve
𝜙→ 𝜙+2𝜋 are rare tunnelling events, which we quantify in the next section.

1.3 Tunnelling and Instantons

Having appreciated the importance of tunnelling in the low-energy spectrum of Josephson
junctions with charging effects, we now review the powerful method of instantons for
accurately calculating tunnelling amplitudes [109].30 Despite seeming excessive when
applied to the CPB Hamiltonian (1.41), the method will be necessary when we later add
fermions and couple them to the Josephson phase difference. It is this power to include other
quantum fields or work in higher dimensions that means the method of instantons pervades
theoretical high-energy physics [110, 111].

1.3.1 Euclidean Solutions

Although the appearance of imaginary time is taken for granted in the many-body path integral
(our starting point in Chapter 3), we motivate the need for imaginary time in tunnelling
problems by considering the simple problem of a particle encountering a potential barrier.

30Hereon, ‘tunnelling’ refers to phase slips of the superconducting phase difference 𝜙, not the coherent
tunnelling of Cooper pairs through the Josephson junction.
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Fig. 1.10 A barrier potential with an incident particle from the left at energy 𝐸 , which is
below the barrier height 𝑉0. The particle is able to penetrate the barrier due to quantum
tunnelling. Classical turning points are labelled by 𝑞1 and 𝑞2.

This setting will be where we build our intuition for the Euclidean solutions of the more
elaborate tunnelling problem we encounter later.

Consider a quantum mechanical particle in 1D with position 𝑞 and momentum 𝑝

encountering a potential barrier such as that in Figure 1.10, whose Hamiltonian is

�̂� =
𝑝2

2𝑚
+𝑉 (𝑞) . (1.44)

When the particle has energy 𝐸 , which less than the height of the barrier 𝑉0, most of the
particle is reflected but a small part is transmitted. This part has an amplitude proportional to
𝑒−𝐵 [1+O(ℏ)], where from the Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approximation
we have 𝐵 = 1

ℏ

∫ 𝑞2
𝑞1
𝑑𝑞

√︁
2𝑚 [𝑉 (𝑞) −𝐸], with integration happening over the classically

forbidden region 𝑞 ∈ (𝑞1, 𝑞2). [This is not seen in any order of perturbation theory, since
it vanishes more rapidly than any power of ℏ.] In this region, the total energy is less than
the potential energy. If interpreting the difference as a negative kinetic energy, we would
conclude that the velocity was imaginary, just as if it were the derivative of 𝑞 with respect to
an imaginary time. This gives a physical motivation for applying Euclidean analysis, even
though it is somewhat trivial with one degree of freedom.
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If we were to try and write this process as a path integral, we would write the propagator
between positions 𝑞i and 𝑞f as

⟨𝑞f | 𝑒−𝑖�̂�𝑇/ℏ |𝑞i⟩ =
∫ 𝑞(𝑇)=𝑞f

𝑞(0)=𝑞i

D𝑞 𝑒𝑖𝑆/ℏ, (1.45)

where the exponent is the familiar integral of the Lagrangian 𝑆 =
∫
𝑑𝑡

[
𝑚
2 ¤𝑞2−𝑉 (𝑞)] . Clearly,

the stationary-phase approximation fails to describe tunnelling processes: there is no classical
solution of the real time action with tunnelling boundary conditions if 𝐸 <𝑉0. This may tempt
us to conclude that we cannot perform a semiclassical approximation to the tunnelling process,
but the success of the standard JWKB approximation demonstrates that this conclusion must
be untrue. The problem lies with the stationary-phase approximation in the path integral
framework.

Now consider an analytic continuation 𝑡→−𝑖𝜏 of the matrix element

⟨𝑞f | 𝑒−𝑖�̂�𝑇/ℏ |𝑞i⟩ → ⟨𝑞f | 𝑒−�̂�𝛽/ℏ |𝑞i⟩ , (1.46)

where 𝑡 ∈ [0,𝑇) → 𝜏 ∈ [0, 𝛽). This new propagator also has a path integral representation
with action

𝑖𝑆 = 𝑖
∫ 𝑇

0
𝑑𝑡

[𝑚
2
¤𝑞2−𝑉 (𝑞)

]
→

∫ 𝛽

0
𝑑𝜏

[
−𝑚

2
¤𝑞2−𝑉 (𝑞)

]
= −

∫ 𝛽

0
𝑑𝜏

[𝑚
2
¤𝑞2 +𝑉 (𝑞)

]
= −𝑆E.

(1.47)
Thus, in addition to changing the factor of 𝑖 in the exponential into a minus sign, the potential
has been flipped upside down. Now there do exist solutions to the imaginary-time equations of
motion with tunnelling boundary conditions, corresponding to saddle points of the Euclidean
action 𝑆E. Information about the low-energy spectrum follows by comparison to the spectral
(or ‘Lehmann’) representation

⟨𝑞f | 𝑒−�̂�𝛽 |𝑞i⟩ =
∑︁
𝑛

𝑒−𝛽𝐸𝑛 ⟨𝑞f |𝑛⟩ ⟨𝑛|𝑞i⟩ (1.48)

and its functional dependence on 𝛽 as 𝛽→∞. (From now on we set ℏ = 1 so that 𝛽→∞
effects the 𝛽/ℏ→∞ limit.)

The analytical continuation feels artificial thus far—what has it achieved? It has identified
the paths whose vicinities give the dominant contributions to the path integral in the
semiclassical limit, which we can soon use to evaluate the path integral in the saddle-point
approximation. With start and end points on different sides of the potential barrier, there
were no stationary-action (i.e., classical) trajectories in real time: all trajectories with those
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boundary conditions interfered very destructively. Yet, their cumulative effect can be extracted
from a finite number of regions in the space of possible trajectories, namely those proximate
to saddle points in imaginary time. So, while the tunnelling amplitude would have to be
painfully calculated from the real-time path integral as a sum of interfering non-stationary
paths, the dominant contributions are concentrated around classical paths in imaginary-time
and are thus amenable to a saddle-point approximation. The destructive interference in
the real-time path integral leaves its mark, however, which gives rise to the exponential
suppression of the tunnelling amplitude in the size of the barrier [112].

1.3.2 The Dilute Instanton Gas for Periodic Potentials

We now return to the concrete problem of quantum tunnelling in Josephson junctions and
expose the instanton calculation in detail.

Recall that the Hamiltonian in Eq (1.41) has a symmetry under 𝜙→ 𝜙 + 2𝜋, which
will also be true of the microscopic Hamiltonian that generates the Josephson potential in
Chapter 3.31 Hence, physically, 𝜙 is compact on a [0,2𝜋) interval. To spare ourselves a later
translation of this section’s results to the setup of Chapter 3, we will consider a Josephson
potential with two minima at 𝜙 = 0 and 𝜙 = 𝜋 from the outset, with Hamiltonian

�̂� = 𝐸C(�̂� −𝑁g)2−𝐸J cos (2𝜙) (1.49)

chosen for simplicity. We opt not to think of 𝜙→ 𝜙 + 𝜋 as a general symmetry since we
shall maintain that 𝜙 = 0 and 𝜙 = 𝜋 are inequivalent points. [Of course, the 𝑁g spectra of the
particular Hamiltonians (1.41) and (1.49) are related through ‘BZ’ folding, but we choose
the folded picture.]

We express the imaginary-time propagator as a path integral, treating the periodicity of 𝜙
carefully:

⟨𝜙 𝑓 | 𝑒−�̂�𝛽 |𝜙𝑖⟩ =∑︁
𝑤

∫ 𝜙𝛽=𝜙 𝑓 +2𝜋𝑤

𝜙0=𝜙𝑖
D𝜙 exp

{
−
∫ 𝛽

0
𝑑𝜏

[
1
2

1
8𝐸C
(𝜕𝜏𝜙𝜏)2 + 𝑖

𝑁g

2
(𝜕𝜏𝜙𝜏) −𝐸J cos (2𝜙𝜏)

]}
.

(1.50)

31As made clear in Chapter 3, our situation will be entirely distinct from the so-called 4𝜋 Josephson
effect [113] which occurs when a parity-preserving Josephson junction is formed between the ends of two
topological superconducting wires 𝐴 and 𝐵 hosting MZMs �̂�′

𝐴
and �̂�′′

𝐵
through a term ∝ 𝑖�̂�′

𝐴
�̂�′′
𝐵

cos (𝜙/2).
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Notice that 𝜙𝜏 has become a non-compact variable lying anywhere on the real line,32 allowed
to have nontrivial winding 𝑤 ∈ ℤ. Correspondingly, the Josephson potential in the action
is an infinite periodic potential, just as we argued from a wavefunction perspective in the
previous section when we introduced 𝑁g as an effective momentum.

We now look for the classical solutions of this action satisfying the saddle-point condition
𝛿𝑆 = 0. The exact differential term simply contributes 𝑖𝑁g

2 (𝜙f − 𝜙i + 2𝜋𝑤) to the action.
The Euler-Lagrange equations from the remaining terms give the motion of a particle with
coordinate 𝜙𝜏 in an inverted cosine potential, sketched in Figure 1.11. It is also sufficient to
consider only paths with 𝜙f = 𝜙i, since these are the ones that appear in the partition function
𝑍 =

∫ 2𝜋
0 𝑑𝜙 ⟨𝜙| 𝑒−�̂�𝛽 |𝜙⟩, where 𝛽 is the inverse temperature. The most important trajectories

are those that start and end at the maxima 𝜙 = 0, 𝜋 of the inverted potential, since these are the
points that accumulate the least action. One obvious trajectory is for the particle to remain at
rest at a maximum. Yet, from our intuition about classical mechanics, we additionally see
that the particle may leave a maximum at 𝜙 = 0 and accelerate through a minimum to reach
another maximum at 𝜙 = 𝜋, which is known as the instanton solution, depicted in Figure 1.11.
(When 𝜙 advances by −𝜋, we label it an anti-instanton.) After reaching the other maximum,
the particle may stay there for an arbitrary amount of time before returning. We henceforth
denote the potential by 𝑉𝜙 ≡ −𝐸J cos (2𝜙) for brevity. The instanton profile follows from the
conservation of Euclidean energy,

𝜕𝜏𝜙
★
𝜏 = 4

√︃
𝐸C [𝑉𝜙★𝜏 −𝑉0] . (1.51)

32In deriving the path integral [114], one inserts resolutions of the identity 𝟙 =∑
𝑁 𝑗 ∈ℤ

∫ 2𝜋
0 𝑑𝜙 𝑗 |𝜙 𝑗⟩⟨𝜙 𝑗 |𝑁 𝑗⟩⟨𝑁 𝑗 | at each time step, giving contributions · · · ⟨𝜙 𝑗 |𝑁 𝑗⟩⟨𝑁 𝑗 |𝜙 𝑗−1⟩ · · · ∝

𝑒
∑

𝑗 𝑁 𝑗 (𝜙 𝑗−𝜙 𝑗−1 ) . The sums over 𝑁 𝑗 are traded for integrals with the Poisson summation formula∑
𝑁 ∈ℤ 𝑓 (𝑁) =

∑
ℓ

∫ ∞
−∞ 𝑑𝑁 𝑓 (𝑁)𝑒2𝜋𝑖ℓ𝑁 , so that each (𝜙 𝑗 − 𝜙 𝑗−1) → (𝜙 𝑗 + 2𝜋ℓ 𝑗 − 𝜙 𝑗−1). The key step is

supplanting each 𝜙 𝑗 with a non-compact variable 𝜙′
𝑗
= 𝜙 𝑗 +2𝜋

∑ 𝑗

𝑘=1 ℓ𝑘 defined on (−∞,∞), which removes the∑
ℓ 𝑗

summations: ∏
𝑗

∑︁
ℓ 𝑗

∫ 2𝜋

0
𝑑𝜙 𝑗𝑒

𝑁 𝑗 (𝜙 𝑗+2𝜋ℓ 𝑗−𝜙 𝑗−1 ) =
∏
𝑗

∫ ∞

−∞
𝑑𝜙′𝑗𝑒

𝑁 𝑗 (𝜙′𝑗−𝜙′𝑗−1 ) .

Implicit in this redefinition is that 𝜙′ satisfies the original boundary conditions modulo 2𝜋. The standard form
of the path integral then follows by performing the resulting Gaussian integrals over all 𝑁 𝑗 .
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Fig. 1.11 A diagram showing the inverted cosine potential −𝑉𝜙 = 𝐸J cos𝜙 and a classical
instanton solution linking the maxima at 𝜙 = 0 and 𝜙 = 𝜋.

Its action (relative to the trivial action that would accumulate if the particle were to never
leave) is found to depend only on the shape of the potential:

𝑆★−𝑉0𝜏 =
∫ 𝜏

0
𝑑𝜏

[
1
2

1
8𝐸C

(
𝜕𝜏𝜙

★
𝜏

)2 +𝑉𝜙★𝜏 −𝑉0

]
(1.52)

=
∫ 𝜏

0
𝑑𝜏

[
1

2
√
𝐸C
(𝜕𝜏𝜙★𝜏 )

√︃
𝑉𝜙★𝜏 −𝑉0

]
=

1
2
√
𝐸𝐶

∫ 𝜋

0
𝑑𝜙

√︃
𝑉𝜙★𝜏 −𝑉0. (1.53)

Each instanton has a timescale that we may estimate from Eq. (1.51) by approximating
the potential minimum at 𝜙 = 𝜋, say, as𝑉𝜙 ≈ 𝑉 ′′

2 (𝜙−𝜋)2, giving 𝜕𝜏𝜙★𝜏 ≈ −
√

8𝐸C𝑉 ′′(𝜙★𝜏 −𝜋) ≡
−𝜔(𝜙★𝜏 − 𝜋). At long times, 𝜏→∞, this integrates to 𝜙★𝜏 → 𝜋 − 𝑒−𝜔𝜏, showing that the
temporal extent of an instanton is roughly reciprocal to the oscillator frequency of the wells.33
Since each instanton is localised in time, there are approximate solutions to the equations of
motion where many instantons appear in sequence, separated by times much greater than
their widths, demonstrated in Fig. 1.12. As the path integral prescribes, we must sum over all
these configurations of 𝜙𝜏 to calculate the propagator. The resulting summation is called
the dilute instanton gas [109]. Its validity hinges on the timescale for instantons being much
shorter than typical instanton separations, which means that configurations of overlapping
instantons constitute only a minuscule fraction of the space of summed trajectories. Also
assumed is that the instantons barely interact at these long distances.

In summing all configurations, we group trajectories according to how many instantons
and anti-instantons appear, counted by 𝑞 and 𝑞, respectively. It is heuristically clear that

33That this timescale is typically short is what inspired ’t Hooft to coin the term “instant-on” [109].



1.3 Tunnelling and Instantons 35
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τ

Fig. 1.12 Schematic representation of a phase profile 𝜙𝜏 with zero winding 𝑤 = 0 that
contributes to the dilute instanton gas summation, composed of independent (anti-)instantons
at times 𝜏𝑗 (𝜏𝑗 ). The timescale of instantons relative to inverse temperature 𝛽 is exaggerated
compared to the assumptions of the dilute instanton gas approximation.

trajectories with different 𝑞 or 𝑞 are not perturbatively related to each other, so these are
stable quantities.34 Instantons and anti-instantons may appear at any time and in any order,
but each comes with an 𝑒−𝑆★ penalty, so the summation takes the form

𝑍 ∝ 𝑒−𝛽(𝑉0+𝜔/2)
∑︁
𝑤

∞∑︁
𝑞,𝑞=0

𝛿𝑤, 𝑞−�̄�2

∫ 𝛽

0
𝑑𝜏1

∫ 𝛽

𝜏1

𝑑𝜏2 · · ·
∫ 𝛽

𝜏�̄�−1

𝑑𝜏𝑞 (1.54)∫ 𝛽

0
𝑑𝜏1

∫ 𝛽

𝜏1

𝑑𝜏2 · · ·
∫ 𝛽

𝜏𝑞−1

𝑑𝜏𝑞 (𝐾𝑒−𝑆★)𝑞+𝑞𝑒𝑖𝜋𝑤𝑁g . (1.55)

Here we included quantum fluctuation contributions 𝜔 and 𝐾 that we choose not to evaluate,
only to note that they come from perturbed classical trajectories [115]. We see above a
competition between entropy and energetics that decides the typical density of instantons [114].
The configurational entropy simplifies to

∫ 𝛽

0 𝑑𝜏1
∫ 𝛽

𝜏1
𝑑𝜏2 · · ·

∫ 𝛽

𝜏𝑞−1
𝑑𝜏𝑞 =

𝛽𝑞

𝑞! for both instanton
species. The 𝛿𝑤, 𝑞−�̄�2

factor ensures consistency between the number of instantons and the
winding number, enforcing that 𝑞 and 𝑞 are simultaneously odd or even for 𝜙𝜏 to start and end
in a minimum of the same 0- or 𝜋-like type. It is therefore easiest to split up the summation

34In fact they label topologically distinct instanton sectors (in the mathematical sense).
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into even and odd contributions:

𝑍 ∝ 𝑒−𝛽(𝑉0+𝜔/2)
[ ∞∑︁
𝑞=odd

(
𝐾𝛽𝑒−𝑆

★

𝑒𝑖
𝜋𝑁g

2

)𝑞
𝑞!

∞∑︁
𝑞=odd

(
𝐾𝛽𝑒−𝑆

★

𝑒−𝑖
𝜋𝑁g

2

)𝑞
𝑞!

+ (1.56)

∞∑︁
𝑞=even

(
𝐾𝛽𝑒−𝑆

★

𝑒𝑖
𝜋𝑁g

2

)𝑞
𝑞!

∞∑︁
𝑞=even

(
𝐾𝛽𝑒−𝑆

★

𝑒−𝑖
𝜋𝑁g

2

)𝑞
𝑞!

]
. (1.57)

Recognising these as the hyperbolic functions, we apply the angle addition formula to
conclude that

𝑍 ∝ 𝑒−𝛽(𝑉0+𝜔/2) cosh
[
2𝛽𝐾𝑒−𝑆

★

cos
(𝜋

2
𝑁g

)]
. (1.58)

This is the partition function of a two-level system with energies that disperse with 𝑁g as

𝐸±(𝑁g) =𝑉0 + 𝜔2 ±2𝐾𝑒−𝑆
★

cos
(𝜋

2
𝑁g

)
, (1.59)

as is expected for a tight-binding problem with nearest-neighbour hopping strength 𝑡0→𝜋 =
𝐾𝑒−𝑆

★. (The quantity 𝐾𝑒−𝑆★ also sets the average instanton density ⟨𝑞⟩/𝛽 in the above
summation, so its smallness justifies the diluteness approximation a posteriori.) Looking back
at Figure 1.9 confirms that the same dispersion shape results from folding the spectrum of the
−𝐸J cos𝜙 potential. We have thus found the 0→ 𝜋 tunnelling amplitude for the Josephson
Hamiltonian (1.49), which will serve us well in Chapter 3 when we adapt this method to
include topology-changing fermions.

Even in this simple 1D example that could equally have been treated with the JWKB
approximation, the instanton approach has its advantages. Importantly, it gave us a controlled
approximation [114] unlike JWKB.35 The first-order result gave us the exponent for the
tunnelling amplitude, while the prefactor 𝐾 could in principle be calculated by performing the
fluctuation integrals around classical instanton configurations.36 The density of the instanton
gas is also a parameter that can be pushed beyond the dilute limit.

35In JWKB, one expands the exponent of 𝜓(𝑞) = 𝑒𝑖Φ(𝑞)/ℏ to a certain order in ℏ𝑛, solves differential equations
and matching conditions (that are increasingly unwieldy in 𝑛), then hopes that the result is accurate.

36The second-order Gaussian fluctuation integrals require calculating a functional determinant 𝐾 ∝
det

(
− 1

8𝐸C
𝜕2
𝜏 +𝑉 ′′𝜙

)
, whose detailed calculation is found in Refs. [115, 116].
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1.4 Thesis Outline

With this conceptual understanding of modern topological superconductors and the method
of instantons, we are ready to present novel results. The content of the rest of the thesis has
been adapted from the following articles published during my PhD:

• Elis Roberts, Jan Behrends and Benjamin Béri. Physical Review B 101, 155133 (2020)
Second-Order Bulk-Boundary Correspondence in Rotationally Symmetric Topological
Superconductors from Stacked Dirac Hamiltonians

• Elis Roberts, Jan Behrends and Benjamin Béri. arXiv:2112.14280
Quantum Tunneling in the Presence of a Topology-Changing Fermionic Bath

These form the basis of Chapters 2 and 3, respectively. In Chapter 2 we see how the
rotation representations associated with a symmetry-indicated topological phase can be
used to diagnose second-order topology in 2D superconductors, manifesting as 0D corner-
MZMs. This is done systematically by mapping changes in bulk symmetry representations to
constraints on how chiral edge modes may gap out. In Chapter 3 we consider the general
scenario of topological fermions coupled to a boson whose dynamics are described by
tunnelling events. We find that the topology change of the fermions suppresses tunnelling
using an example rooted in Josephson junction MZM platforms that include charging effects.
We summarise these findings in Chapter 4 and present possible directions for future research.

https://doi.org/10.1103/PhysRevB.101.155133
https://doi.org/10.48550/arXiv.2112.14280




Chapter 2

Second-order bulk-boundary
correspondence in rotationally symmetric
topological superconductors

2.1 Motivation

The classification of topological phases of matter, as we argued in Chapter 1, is one of the
cornerstones of modern condensed-matter physics. Depending on their dimensionality and
the presence of antiunitary symmetries, gapped noninteracting Hamiltonians may fall into
topologically distinct sectors characterised by sets of topological invariants [16, 17, 117].
We further saw that crystalline symmetries enrich the classification of topological insulators
and superconductors, giving rise to a wider class of materials called crystalline topological
insulators [36, 118, 119, 33, 120, 10, 38, 47, 48]. The interplay of crystalline and antiunitary
symmetries makes the topological classification a challenging task, as there are for example
230 space groups in three dimensions, allowing for a plethora of symmetry-protected
topological phases partially characterised by various symmetry indicators [36, 121, 56, 38,
47, 48, 122–124, 50] that we reviewed in Sec. 1.1.4.

One main goal of the symmetry classification of topological insulators and superconductors
is to establish a correspondence between the invariants defined in the bulk and in-gap states
that arise at the surfaces [125–127]. In crystalline topological insulators, this bulk-boundary
correspondence links the bulk invariants to gapless modes at surfaces that respect the
underlying spatial symmetries [36, 118, 119].

Spatial symmetries may also give rise to higher-order topological insulators and super-
conductors. As we introduced in Sec. 1.1.5, these phases have gapped boundaries, but host
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“higher-order boundary modes”: gapless boundary-excitations of codimension greater than
one, e.g., bound to their hinges or corners [68, 67, 69, 65]. Higher-order topological phases
have been studied in systems protected by order-two symmetries (e.g., reflection and inversion
symmetry [68, 67, 69, 128, 46, 129]), rotational invariance [66, 65, 71], and combinations of
the above [130–132]. Gapless hinge and corner excitations may also appear in interacting
models [133, 97], Floquet phases [134, 135] and can coexist with gapless surface states [136].
Higher-order topology does not necessarily rely on an underlying regular lattice [137], but can
be also found in quasicrystals respecting certain spatial symmetries [138, 139]. Corner modes
have been found experimentally in various metamaterials, including phononic lattices [140],
engineered electronic lattices [141], topolectrical [142] and microwave circuits [143]. Strong
experimental evidence further suggests the existence of hinge modes in bismuth [132].

In higher-order topological phases, the presence and robustness of boundary modes
depends on how the underlying spatial symmetries transform the degrees of freedom of
neighbouring surfaces into another. This raises the question of how to relate this transformation
of neighbouring surfaces to topological invariants defined in the bulk. Establishing this
relationship amounts to deriving a bulk-boundary correspondence in a manner that keeps the
role of the defining symmetries transparent. This has been the guiding principle behind recent
work relating symmetry indicators to higher-order boundary modes in insulators [37, 144],
and it has also been a key element in the work of Trifunovic and Brouwer establishing the bulk-
boundary correspondence for higher-order topological phases with order-two symmetries in
the absence of weak (i.e., lower dimensional) invariants [46, 129]. Here we describe how such
a bulk-boundary correspondence program can be carried out beyond these cases, focussing
on two-dimensional (2D) crystalline superconductors with 𝑛-fold rotational symmetry (i.e.,
𝐶𝑛 symmetry), and allowing for nonvanishing weak invariants. Establishing a link between
edge transformation properties and bulk invariants provides an illuminating perspective
complementary to counting arguments based on bulk defect classifications [121, 56], and
gives results consistent with examples based on very recent extensions of symmetry indicators
to the superconducting classes [145, 49].

Our approach is based on an effective description in terms of stacked Dirac models [122,
37] like those introduced in Sec. 1.1.3. Using this, we show that rotational invariance
dictates a relationship between adjacent surfaces and that this may give rise to protected
second-order boundary modes in the form of Majorana bound states. We express this
bulk-boundary correspondence in terms of the bulk invariants for rotationally symmetric
crystalline superconductors developed in Ref. [56] and an additional contribution signifying
the combined effects of weak topological invariants and the physical rotation centre. While
our considerations are general, for the purposes of a detailed exposition we will be focusing
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on 𝐶4-symmetric systems: of the 𝐶2, 𝐶3, 𝐶4, and 𝐶6 symmetries possible in 2D crystals,
the 𝐶4-symmetric case is the one displaying the richest combination of stacked Dirac and
second-order topological superconducting features. (We shall comment on applying our
methods to the other cases in a Sec. 2.5.) To demonstrate the validity of our stacked Dirac
approach, we also illustrate our results on several concrete lattice models.

In what follows, for brevity we shall refer to the second order Majorana bound states we
find as corner modes, even though rotational symmetry does not, strictly speaking, require
them to be at the geometrical corners of the system: Their position can be moved in a
rotation-symmetric manner e.g., by adding suitable Kitaev chains to the boundary [65, 121].
However, such a deformation merely shifts the Majorana bound states around the boundary
without altering their position relative to each other and, as such, it cannot gap out the
Majoranas. In what follows, the term corner mode should thus be understood up to such
Kitaev chain deformations.

This Chapter is organised as follows: After briefly summarizing the symmetry classifi-
cation of rotationally invariant superconductors [56] in Sec. 2.2, we introduce our stacked
Dirac model based approach in Sec. 2.3. We present an effective edge theory and consider
the most general mass terms that gap out the edge modes. To relate the bulk description to
the boundaries, we relate the topologically distinct rotation properties of the boundary mass
term to the bulk invariants in Sec. 2.4. We show some explicit examples in Sec. 2.6 and
conclude in Sec. 2.7. In Appendix A, we clarify the role of the unit cell and explicitly derive
the edge Hamiltonian.

2.2 Bulk Topological Classification

We work with 2D topological crystalline superconductors in class D. These are particle-hole
(PH) symmetric systems which admit an effectively single-particle Bogoliubov-de-Gennes
(BdG) Hamiltonian. Working in momentum space and denoting this BdG Hamiltonian by
H(k) at momentum k in the Brillouin zone (BZ), PH symmetry is given by

ΞH(k)Ξ−1 = −H(−k), (2.1)

where Ξ is an antiunitary operator satisfying Ξ2 = +1.
The presence of an additional 𝑛-fold rotational symmetry𝐶𝑛 allows for a richer topological

classification [56, 50, 66] than if the only symmetry was PH symmetry. We now review the
classification scheme devised by Benalcazar et al. for classifying crystalline superconductors
with rotational symmetry [56]. This is a concrete implementation of the symmetry indicator
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Fig. 2.1 The Brillouin zone for 𝐶4-symmetric models. There are two fourfold fixed points
labelled 𝚪 and M, and two twofold fixed points X and X′ that transform into each other upon
a fourfold rotation. The shaded region indicates the fundamental domain that generates the
entire BZ.

approach to classifying crystalline topological phases, whose principles we laid out in
Sec. 1.1.4, which is to use the symmetry representations of occupied bands at high symmetry
points in the BZ [36, 123, 124, 121].

What follows is an abridged version of Sec. 1.1.4 specific to rotational symmetry in 2D.
The rotational symmetry of the model is expressed through the relation

𝑟𝑛H(k)𝑟†𝑛 =H(𝑅𝑛k), (2.2)

where 𝑟𝑛 is an 𝑛-fold rotation operator obeying 𝑟𝑛𝑛 = −𝟙 and 𝑅𝑛 is the SO(2) matrix for 𝑛-fold
rotations in the 2D plane. Since 𝑟𝑛 conserves charge, it commutes with the PH symmetry
operator [Ξ, 𝑟𝑛] = 0 [56]. (There are some subtleties to this statement if Cooper pairs have
nonzero angular momentum, which we defer until Sec. 2.5.3 because it doesn’t impact the
analysis.) The 𝑟𝑛𝑛 = −𝟙 requirement comes from the fact that 𝑟𝑛 is a single particle operator
acting on a particle with half-odd-integer spin (a fermion), for which a Berry phase of
−1 is acquired under a full 2𝜋 rotation. Since these are crystalline superconductors, the
BZ contains certain high-symmetry points (HSPs) 𝚷 (𝑛) , which are invariant under rotation
𝑅𝑛𝚷 (𝑛) =𝚷 (𝑛) up to a reciprocal lattice vector. At these points, the rotational symmetry is
simply [𝑟𝑛, 𝐻 (𝚷 (𝑛))] = 0, and as such the momentum eigenstates can be chosen as eigenstates
of the rotation operator. This allows us to label each state at 𝚷 (𝑛) with its rotation eigenvalue

Π (𝑛)𝑝 = 𝑒𝑖𝜋(2𝑝−1)/𝑛, for 𝑝 = 1,2, . . . 𝑛. (2.3)

For example, in a𝐶4-symmetric BZ (shown in Figure 2.1), there are both fourfold and twofold
fixed points, whose rotation eigenvalues are shown in Figure 2.2.
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Fig. 2.2 The rotation eigenvalues for 𝐶2 and 𝐶4 symmetry, respectively. The PH operator
relates complex conjugate pairs of rotation eigenvalues (while also switching between positive
and negative energy bands).

We now outline how these rotation eigenvalues are used to topologically classify gapped
superconductors in two dimensions. We start by defining a trivial superconductor as one that
can be connected to a superconductor in the atomic limit without closing the gap and while
respecting the same crystalline and PH symmetries throughout. Here the ‘atomic limit’ is
understood as a symmetry-respecting array of zero-dimensional superconductors [49]. For
crystal structures compatible with a symmetric boundary, as we note is required for a generic
bulk-boundary correspondence (see Appendix A.1), a unit cell can be chosen such that an
atomic limit superconductor’s ground state wave function has no momentum-dependent
features. With this more restricted definition of topological equivalence (because it involves
obeying an additional unitary symmetry), the boundary between two inequivalent phases
does not necessarily possess edge states, as we explore in this Chapter. For the ground state
wave function to have no momentum-dependent features, the rotation eigenvalues of the
negative energy states (which, within the BdG description, are all occupied in the ground
state) must be the same at all HSPs in the BZ. This motivates the definition of the topological
invariants as

[Π (𝑛)𝑝 ] ≡ #Π (𝑛)𝑝 −#Γ(𝑛)𝑝 , (2.4)

where #Π (𝑛)𝑝 is the number of negative energy BdG bands with eigenvalue Π (𝑛)𝑝 . Intuitively,
these are chosen because occupancies of rotation eigenvalues will not change unless there is
a gap closing, and taking the difference relative to a reference momentum [chosen as 𝚪 in
Eq. (2.4)] is required for the invariants to be stable under the addition of trivial bands. Under
this definition, a 𝐶𝑛-symmetric superconductor is topological if [Π (𝑛)𝑝 ] is nonzero for any 𝑝.

A complete topological characterisation requires establishing the set of independent
[Π (𝑛)𝑝 ]. They are not all independent because rotational symmetry constrains the rotation
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eigenvalues at 𝐶𝑛-related points in the BZ to be the same (e.g., the 𝐶2 eigenvalues of
the 𝐶4-related X and X′ in the fourfold case, shown in Fig. 2.1). PH symmetry places
further restrictions on these invariants, since if the rotation eigenvalue of a state is Π (𝑛)𝑝 , its
PH-conjugate state has eigenvalue Π (𝑛)∗𝑝 = Π (𝑛)𝑛−𝑝+1. That is to say, the number of occupied
eigenvalues Π (𝑛)𝑝 is equal to the number of unoccupied eigenvalues Π (𝑛)𝑛−𝑝+1, which implies

[Π (𝑛)𝑝 ] = −[Π (𝑛)𝑛−𝑝+1] . (2.5)

For 𝐶4-symmetric systems there are three independent rotation invariants [56],

[𝑋] ≡ #𝑋1− (#Γ1 +#Γ3), (2.6a)

[𝑀1] ≡ #𝑀1−#Γ1, (2.6b)

[𝑀2] ≡ #𝑀2−#Γ2, (2.6c)

which, in conjunction with the Chern number Ch, fully classify the bulk topology in this
symmetry class.

2.2.1 Importance of Rotation Centre

In the previous section, we started with the rotational symmetry relation Eq. (2.2), but a
system with periodic boundary conditions can have many centres of rotation [124, 146], as
exemplified in Fig. 2.3. Although operators implementing rotation about different centres are
easily related through composition with translation operators, the classification of periodic
Hamiltonians summarised above relies on a momentum-independent rotation operator [56],
which can only be true for one of the rotation centres. Since a finite system with boundaries
may only satisfy rotational symmetry about one of the rotation centres, the physical symmetry
operator relating different edges of a finite system may be different (but closely related) to the
symmetry operator used to classify periodic Hamiltonians in Ref. [56]. In this section we
explicitly relate these distinct rotation operators in the case of 𝐶4 symmetry, which allows for
two rotation centres that we refer to as A and B.

Rotation Centre A

We now explicitly derive the rotation operator in momentum-space for case A depicted in
Fig. 2.3, in a similar spirit to Ref. [124]. Let lattice sites be situated at R = 𝑛1a1+𝑛2a2, where
𝑛𝑖 ∈ Z are integer coefficients of primitive lattice vectors a𝑖. Associated with each lattice
site are orbitals 𝛼 located at atomic positions d𝛼 within a unit cell, such that many orbitals
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Fig. 2.3 Two options (A and B) for the rotation centre in an infinite 𝐶4-symmetric lattice. The
dotted box shows a primitive unit cell with its associated lattice site in the middle. Case B
has its rotation operator shifted by c = 1

2 (a1 +a2)

may share the same atomic position. Consider the position of a particular orbital, given by
r ≡ R+d𝛼. Let 𝑅𝐴 be defined as a pure rotation 𝑅𝑛 about the origin which coincides with a
lattice site. If this operation is to be a symmetry, then an atom located at r must be mapped to
another atomic site so that

𝑅𝐴 : r→ 𝑅𝑛r = 𝑅𝑛 (R+d𝛼) = R′+d𝛽, (2.7)

for some other lattice point R′ and atomic site d𝛽. A key point to note is that for certain
lattices one cannot choose a basis in the unit cell such that R′ = 𝑅𝑛R for all d𝛼, as we soon
explain in more detail. In second-quantised notation the operator �̂�𝐴 changes the position of
each atomic orbital as

�̂�𝐴𝑐
†
𝛼 (R+d𝛼) �̂�−1

𝐴 = 𝑐†𝛽 (R′+d𝛽)R𝛽𝛼, (2.8)

which includes a unitary matrix R𝛽𝛼 (with implicit summation over orbitals 𝛽) to account for
rotation amongst atomic orbitals, whose elements R𝛽𝛼 are only nonzero when d𝛼→ d𝛽. Our
Fourier transform convention has the periodic phase taken with respect to lattice sites, such
that momentum space operators are given by1

𝑐†𝛼 (k) =
1√
𝑁

∑︁
R
𝑐†𝛼 (R+d𝛼) exp(𝑖k ·R), (2.9)

1This Fourier transform convention implies a certain choice of basis functions [147, 148]. For details on the
basis choice cf. Appendix A.1.
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which transform as [124]

�̂�𝐴𝑐
†
𝛼 (k) �̂�−1

𝐴 =
1√
𝑁

∑︁
R
�̂�𝐴𝑐

†
𝛼 (R+d𝛼) �̂�−1

𝐴 exp(𝑖k ·R)

=
1√
𝑁

∑︁
R
𝑐†𝛽 (R′+d𝛽)R𝛽𝛼 exp(𝑖k ·R)

=
1√
𝑁

∑︁
R′
𝑐†𝛽 (R′+d𝛽)R𝛽𝛼𝑒𝑖k·(𝑅𝑇𝑛R′+𝑅𝑇𝑛d𝛽−d𝛼)

= 𝑐†𝛽 (𝑅𝑛k)R𝛽𝛼𝑒𝑖(𝑅𝑛k)·(d𝛽−𝑅𝑛d𝛼) . (2.10)

This shows that the basis spinors 𝜉†k =
⊕

𝛼

(
𝑐†𝛼 (k), 𝑐𝛼 (−k)

)
of the second-quantised Hamil-

tonian
�̂� =

1
2

∫
𝑑2k
(2𝜋)2 𝜉

†
kH(k)𝜉k, (2.11)

transform as

�̂�𝐴𝜉
†
k�̂�
−1
𝐴 =

⊕
𝛼

(
�̂�𝐴𝑐

†
𝛼 (k) �̂�−1

𝐴 , �̂�𝐴𝑐𝛼 (−k) �̂�−1
𝐴

)
=

⊕
𝛼

(
𝑐†𝛽 (𝑅𝑛k)R𝛽𝛼, 𝑐𝛽 (−𝑅𝑛k)R∗𝛽𝛼

)
𝑒𝑖(𝑅𝑛k)·(d𝛽−𝑅𝑛d𝛼)

≡ 𝜉†𝑅𝑛k𝑟𝑛 (k). (2.12)

(Note that Refs. [52, 49] consider more general phase choices for the matrix R∗ in the hole
sector depending on the symmetry of the superconducting pairing term, which we discuss
in Section 2.5.3.) Rotational invariance of the second-quantised Hamiltonian �̂�𝐴�̂��̂�

−1
𝐴 = �̂�

implies that the Bloch Hamiltonian needs to satisfy

𝑟𝑛 (k)H (k)𝑟†𝑛 (k) =H(𝑅𝑛k). (2.13)

In general, the momentum-dependent part 𝑒𝑖(𝑅𝑛k)·(d𝛽−𝑅𝑇𝑛d𝛼) of 𝑟𝑛 (k) is not a complex
phase universal to all orbitals because d𝛽 may lie in a different unit cell than 𝑅𝑛d𝛼 for certain
𝛼. This occurs, for example, when atoms are situated at the edge of a unit cell. If it is
impossible to define a 𝐶𝑛-symmetric unit cell without atoms on the edges of the cell, then the
rotation operator is generally not momentum-independent and the classification scheme of
Ref. [56] (in its current form) does not hold; cf. Appendix A.1 for details. Lattices of the same
type also present an impediment for formulating a bulk-boundary correspondence: When the
atomic sites lie at the edge of a unit cell, it is impossible to tile a finite rotationally symmetric
system without resorting to an extensive number of partial unit cells at the boundary. Any



2.2 Bulk Topological Classification 47

classification scheme for such a system would be non-generic, as it needs to take into account
the lattice termination. When all atoms lie wholly within the unit cell, which respects
rotational invariance individually, we can indeed have 𝑅𝑛d𝛼 = d𝛽 for all orbitals 𝛼 such
that 𝑒𝑖(𝑅𝑛k)·(d𝛽−𝑅𝑛d𝛼) = 1, recovering Eq. (2.2) with 𝑟𝑛 (k) → 𝑟𝑛. Henceforth, when simply
referring to the unit cell, we shall be working with this restricted 𝐶𝑛-symmetric unit cell
notion that allows for a well-defined bulk-boundary correspondence.

Rotation Centre B

Now consider a different operation 𝑅𝐵 which consists of a pure rotation 𝑅𝑛 about a different
centre which is shifted by a vector c. Different lattices have different options for c as long
as a rotation about c maps lattice sites to other lattice sites. In the case of 𝐶4 symmetry
there is only the option of c = 1

2 (a1 +a2), shown in Fig. 2.3. Lattice sites are still situated
at R = 𝑛1a1 +𝑛2a2, and we again consider a particular orbital located at position r = R+d𝛼.
The rotation 𝑅𝐵 then changes each position

𝑅𝐵 : r→ 𝑅𝑛 (r− c) + c = 𝑅𝑛 (R+d𝛼) + (1−𝑅𝑛)c (2.14)

= R′+d𝛽 + (1−𝑅𝑛)c, (2.15)

i.e., it can be considered a combination of the rotation 𝑅𝐴 about the origin and an additional
translation by (1− 𝑅𝑛)c. In second-quantised notation, the rotation changes the creation
operators as

�̂�𝐵𝑐
†
𝛼 (R+d𝛼) �̂�−1

𝐵 = 𝑐†𝛽 (R′+d𝛽 + [1−𝑅𝑛]c)R𝛽𝛼, (2.16)

which includes the additional translation by a lattice vector (1−𝑅𝑛)c. It is important to note
that even with this shift, the transformation of orbitals into each other is the same as before,
i.e., R𝛼𝛽 is the same as it was for 𝑅𝐴. With the same Fourier transform convention, we see



48
Second-order bulk-boundary correspondence in rotationally symmetric topological

superconductors

that the momentum space operators now transform as

�̂�𝐵𝑐
†
𝛼 (k) �̂�−1

𝐵 =
1√
𝑁

∑︁
R
�̂�𝐵𝑐

†
𝛼 (R+d𝛼) �̂�−1

𝐵 exp(𝑖k ·R)

=
1√
𝑁

∑︁
R
𝑐†𝛽 (R′+d𝛽 + [1−𝑅𝑛]c)R𝛽𝛼𝑒𝑖k·R

=
1√
𝑁

∑︁
R′
𝑐†𝛽 (R′+d𝛽 + [1−𝑅𝑛]c)R𝛽𝛼𝑒𝑖k·(𝑅𝑇𝑛 [R′+d𝛽]−d𝛼)

=
1√
𝑁

∑︁
R′
𝑐†𝛽 (R′+d𝛽)R𝛽𝛼𝑒𝑖(𝑅𝑛k)·R′𝑒𝑖k·(𝑅

𝑇
𝑛d𝛽−d𝛼−[𝑅𝑇𝑛−1]c)

= 𝑐†𝛽 (𝑅𝑛k)R𝛽𝛼𝑒𝑖(𝑅𝑛k)·(d𝛽−𝑅𝑛d𝛼)𝑒−𝑖k·(𝑅
𝑇
𝑛−1)c. (2.17)

Comparing Eq. (2.17) to Eq. (2.10), we see that the rotation operators are related by a
momentum-dependent phase

�̂�𝐵𝑐
†
𝛼 (k) �̂�−1

𝐵 = �̂�𝐴𝑐
†
𝛼 (k) �̂�−1

𝐴 𝑒−𝑖k·(𝑅
𝑇
𝑛−1)c. (2.18)

This extra phase is 𝛼-independent, so that the basis spinors transform as

�̂�𝐵𝜉
†
k�̂�
−1
𝐵 = 𝜉†𝑅𝑛k𝑟𝑛𝑒

−𝑖k·(𝑅𝑇𝑛−1)c (2.19)

≡ 𝜉†𝑅𝑛k𝑟𝑛,c(k), (2.20)

where we introduce a new notation for the rotation operator such that 𝑟𝑛 ≡ 𝑟𝑛,c=0. Of note is
that the momentum-independence of 𝑟𝑛 necessarily implies a momentum-dependence for
𝑟𝑛,c≠0(k). The symmetry relation of the Bloch Hamiltonian is indifferent to this complex
phase and is still given by Eq. (2.13).

Physical Rotation Operator

When a superconducting Hamiltonian is terminated in space, only one of �̂�𝐴 or �̂�𝐵 can be
a symmetry of the whole system �̂� since both rotation centres are mutually incompatible.
Thus, eigenstates of �̂� are simultaneously eigenstates of either �̂�𝐴 or �̂�𝐵. For the bulk (not
terminated) system, at HSPs 𝚷 (𝑛) in momentum space, one has 𝑟𝑛,c(𝚷 (𝑛)) = ±𝑟𝑛 because
𝑒𝑖𝚷

(𝑛) ·(𝑅𝑇𝑛−1)c = ±1 for any valid rotation centre c, though 𝑟𝑛,c(𝚪) = 𝑟𝑛 always. When we
construct an effective bulk theory in the next section, references to the rotation operator are
always to the operator 𝑟𝑛 used to classify bulk Hamiltonians, but when we proceed to deriving
the rotational symmetry of the edge theory we need to consider the physical rotation operator
𝑟𝑛,c(k).
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2.3 Stacked Dirac Models and Boundary Theory

We seek a mapping from the full classification of Ref. [56] summarised in Sec. 2.2 to the
second-order boundary signature. We consider superconductors without conventional gapless
edge states, therefore we focus on the Ch = 0 case of vanishing Chern number. As stated in
the Introduction, our exposition is focused on 𝐶4 symmetry; the modifications required to
treat 𝐶2 and 𝐶6 cases are discussed in Appendix 2.5. Since Majorana modes must always
come in pairs, a 𝐶3-symmetric system is not able to sustain unpaired Majoranas on its three
corners, so we ignore this case entirely.

Our approach is the construction of a continuum model which allows us to describe
interfaces between systems with different topological invariants, reminiscent of a Jackiw-Rebbi
approach [31, 149].

2.3.1 Stacked Dirac Models

We determine the boundary signature for each topological phase based on a description near
the gap closing transitions that change the topology. The previously defined invariants [𝑋],
[𝑀1] and [𝑀2] only change for gap closings at HSPs 𝚷 (𝑛) , though Ch also changes for gap
closings at any generic momenta. Due to 𝐶4 symmetry, gap closings at generic momenta k0

(not HSPs) must come in multiplets of four (at 𝑅 𝑗4k0 with 𝑗 = 0,1,2,3), which changes the
Chern number by ±4. As these gap closings at generic momenta can be smoothly shifted to a
high-symmetry point, henceforth we consider that all gap closings occur at the HSPs 𝚷 (𝑛) .

Near a transition at a HSP 𝚷𝛼, a natural description is provided by a massive 2D Dirac
Hamiltonians H𝛼

𝚷𝛼
(k), with a sign change of the mass across the interface modelling a

boundary between regions with different values of their bulk topological invariants. (The
momentum k here is understood relative to 𝚷𝛼.) We will then link the rotation properties
encoded in the rotation invariants of Eq. (2.6) to properties of these Dirac fermions. Working
with a Dirac model means that our anticipated bulk-boundary correspondence will be in terms
of the difference between topological phases, which indeed is the most general scenario to
which a bulk- boundary correspondence can apply [126]. For any change in topological phase
there are multiple possible stacked Dirac realisations, but we will show that the boundary
signature follows from a feature common to all of these realisations.

The effective modelHeff(k) is the direct addition of all these Dirac Hamiltonians, which
we refer to as a “stack” of Dirac modelsH𝛼

𝚷𝛼
(k), written as

H(k) →Heff(k) =
⊕
𝛼

H𝛼
𝚷𝛼
(k). (2.21)
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Physically, this corresponds to stacking many systems together and leaving them decoupled,
but with the overall system remaining 2D. We have introduced a (redundant) label 𝚷𝛼 to
emphasize the origin of each Dirac Hamiltonian for clarity. Each Dirac model has the same
chirality 2 and is described by a Hamiltonian of the form

H𝛼
𝚷𝛼
(k) = 𝑣𝛼k ·𝝈 +𝑚𝛼𝜎3 (2.22)

respecting PH symmetry [Eq. (2.1)] with Ξ = 𝜎1K, where 𝝈 = (𝜎1,𝜎2) is a 2D vector of
Pauli matrices. Each Hamiltonian has its own (possibly distinct) positive velocity 𝑣𝛼 (chosen
to be isotropic for simplicity), and the parameters 𝑚𝛼 control the band separations of each
Dirac model. Other off-diagonal mass terms are in principle allowed by symmetry, but to
streamline our discussions we choose to include these later among the allowed terms for the
edge theory3.

In working with this continuum picture, we can always envision having folded the
HSPs back to 𝚪: This is always possible through an infinitesimal perturbation that reduces
translational symmetry to a symmetry under translations of two lattice vectors [150]. It may
happen that such reduction of translation symmetry only occurs near the edge, but to treat
the bulk and the boundary on the same footing we consider the 2D effective model as if its
translation invariance had been reduced throughout. Nevertheless, the Dirac Hamiltonians
inherit their properties from the conventional rotation invariants which do distinguish between
different HSPs, relying on the underlying crystalline symmetry. (For example, for a pair of
Dirac Hamiltonians describing gap closings at X and X′, we could allow for deformations of
𝑣𝑥 velocities relative to 𝑣𝑦 such thatH𝛼

X andH𝛼+1
X′ are each only twofold symmetric, but are

related to each other via a fourfold rotation.) For this reason, one may prefer to think of k as
the (small) momentum relative to the respective HSP, even if k becomes the (small) absolute
momentum about 𝚪 in the folded picture.

2.3.2 Rotation Eigenvalues and Signed Representations

In this subsection we describe how the rotation eigenvalues of bulk bands pick out irreducible
representations of the rotation operator 𝑟𝛼4 for each Dirac model in the stack. In a𝐶𝑛-symmetric
BZ, the HSPs may be categorised as either being mapped onto themselves (i.e., fixed) under
𝑛-fold rotation (e.g., 𝚪 and M for 𝐶4) or as being mapped to other HSPs (forming an orbit)
under 𝑛-fold rotation (e.g., the twofold fixed points X and X′ that map into each other under

2The k ·𝝈 term may always be brought to this form because the relative sign of 𝑘1 and 𝑘2 is altered by a
basis rotationH 𝛼 (k) → 𝜎1H 𝛼 (k)𝜎1 for which we would change the sign assigned to 𝑚𝛼.

3Allowing symmetric terms of the form 𝜎3 ⊗𝑀 , for example, where 𝑀 = 𝑀𝑇 and 𝑂𝑀𝑂𝑇 =
⊕

𝛼𝑚𝛼 does
not change the resulting edge theory but its derivation (Appendix A.2) requires a different ansatz.
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Occupied Π (4)𝑝 𝑟𝛼4 𝑚𝛼 𝜂𝛼

𝑒𝑖𝜋/4 Γ1, 𝑀1 +𝑒−𝑖𝜎3𝜋/4 > 0 +1
𝑒−𝑖𝜋/4 Γ4, 𝑀4 +𝑒−𝑖𝜎3𝜋/4 < 0 +1
𝑒𝑖3𝜋/4 Γ2, 𝑀2 −𝑒−𝑖𝜎3𝜋/4 < 0 −1
𝑒−𝑖3𝜋/4 Γ3, 𝑀3 −𝑒−𝑖𝜎3𝜋/4 > 0 −1

Table 2.1 The correspondence of the rotation eigenvalue of the negative energy band to the
bulk mass and rotation representation at the fourfold symmetric points 𝚪 and M.

fourfold rotation). We treat these two cases slightly differently. As before, we exemplify our
approach on 𝐶4-symmetric systems. We start with the 4-fold fixed points.

Rotation Invariant Momenta

Fourfold rotational symmetry of a Dirac Hamiltonian in the stack means it must satisfy

𝑟𝛼4 H𝛼
𝚷𝛼
(k) 𝑟𝛼†4 =H𝛼

𝚷𝛼
(𝑅4k), (2.23)

where 𝚷𝛼 ∈ {𝚪,M}. Recalling that our effective Hamiltonian is written in terms of Pauli
matrices, it satisfies

𝑒−𝑖𝜎3𝜋/4H𝛼
𝚷𝛼
(k)𝑒𝑖𝜎3𝜋/4 =H𝛼

𝚷𝛼
(𝑅4k). (2.24)

This lets us identify 𝑟𝛼4 ∝ 𝑒−𝑖𝜎3𝜋/4 up to a complex phase. Insisting that the rotation operator
commutes with the PH operatorΞ=𝜎1K leaves only a freedom in the sign of the representation,
however, so that 𝑟𝛼4 = 𝜂𝛼𝑒−𝑖𝜎3𝜋/4, where 𝜂𝛼 = ±1. This sign, in particular sign differences
between representations for differentH𝛼, has physical consequences on the edge of the model,
which we show below. (A similar approach has been used by Khalaf et al. [37].) These
representations are referred to as “signed representations” when their sign is important [37].
Interestingly, for 𝐶4-symmetric points, each rotation eigenvalue directly corresponds to a
representation sign and a sign for the bulk mass term. Crucially these two parameters are
not independent: As seen in Table 2.1, listing the four possibilities shown in Fig. 2.2 for the
occupied rotation eigenvalues at a 𝐶4-symmetric point gives the signed representation 𝑟𝛼4 and
the sign of the mass 𝑚𝛼 for each Dirac Hamiltonian in the stack.
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Momenta Transforming into Each Other

For Dirac Hamiltonians originating from twofold fixed points such as 𝚷𝛼 ∈ {X, X′} in a
𝐶4-symmetric BZ, we instead have twofold rotational symmetry

𝑟𝛼2 H𝛼
𝚷𝛼
(k) 𝑟𝛼†2 =H𝛼

𝚷𝛼
(𝑅2k). (2.25)

In a similar fashion to how we deduced 𝑟𝛼4 , we could deduce that 𝑟𝛼2 ∝ 𝑒−𝑖𝜎3𝜋/2 = −𝑖𝜎3, of
which two choices 𝑟𝛼2 = 𝜂𝛼𝑒−𝑖𝜎3𝜋/2 with 𝜂𝛼 = ±1 commute with PH symmetry. (We refer
to the 𝜂𝛼 = −1 case as the negatively signed representation.) One notices here, however,
that specifying the occupied rotation eigenvalue does not uniquely pick out a representation
sign and a mass sign as it did for the fourfold fixed points. This is because ∓𝑖𝜎3→±𝑖𝜎3

exchanges its two diagonal elements, while changing the sign of the bulk mass would change
which band has negative energy; changing both at once thus leaves the occupied rotation
eigenvalue unchanged. The sign of the bulk mass has implications for the edge states that
appear on the boundary (specifically their direction of propagation), which will be taken
into account when ensuring that we construct Dirac models describing differences between
topological phases with the same Chern number 4.

As we want to know how the system (particularly the boundary) behaves under a 𝜋/2-
rotation, we need to use the underlying fourfold symmetry of the system. In the original lattice
model, momentum states at X+k are mapped to X′+𝑅4k under a fourfold rotation 𝑅4 and
vice versa. In terms of our stacked Dirac picture, such 𝐶4 symmetry dictates that the Dirac
Hamiltonians originating from these points be related by unitary transformations𝑈X′ , that is,
H𝛼

X (𝑅4k) =𝑈X′H𝛼+1
X′ (k)𝑈†X′ andH𝛼+1

X′ (𝑅4k) =𝑈XH𝛼
X (k)𝑈†X. Here, we chose to place the

Dirac Hamiltonians for X and X′ in neighbouring sub-blocks 𝛼 and 𝛼+1, respectively. In
terms of the resulting 4×4 Hamiltonian,

H⊕ (k) ≡ H𝛼
X (k) ⊕H𝛼+1

X′ (k), (2.26)

the only form of this fourfold symmetry compatible with our convention [Eq. (2.22)] of
momenta and Pauli matrices appearing in 𝑘 𝑗𝜎𝑗 combinations and having positive velocities is

H⊕ (𝑅4k) =
[
𝑒−𝑖𝜎3𝜋/4H𝛼+1

X′ (k)𝑒𝑖𝜎3𝜋/4
]
⊕

[
𝑒−𝑖𝜎3𝜋/4H𝛼

X (k)𝑒𝑖𝜎3𝜋/4
]
, (2.27)

4That the sign of the mass at X(′) is not set by the occupied rotation eigenvalues is also one source of the
“surface-state ambiguity” tabulated in Ref. [37], which is where the surface signature of a nontrivial bulk is not
uniquely determined from the symmetry indicators. Once we specify that ΔCh = 0 (using information beyond
symmetry indicators alone), there will be no ambiguity in the surface-state of this system.
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Occupied Π (2)𝑝 𝑚𝛼 𝑟⊕4 𝜂𝛼

𝑒𝑖𝜋/2 𝑋1 > 0 𝑒−𝑖𝜎3𝜋/4 ⊗ 𝜏1 +1
𝑒−𝑖𝜋/2 𝑋2 < 0 𝑒−𝑖𝜎3𝜋/4 ⊗ 𝜏1 +1
𝑒𝑖𝜋/2 𝑋1 < 0 𝑒−𝑖𝜎3𝜋/4 ⊗ 𝑖𝜏2 −1
𝑒−𝑖𝜋/2 𝑋2 > 0 𝑒−𝑖𝜎3𝜋/4 ⊗ 𝑖𝜏2 −1

Table 2.2 The correspondence of the rotation eigenvalue of the negative energy band and
bulk mass to the rotation representation for the X/X′ points. Also shown is the sign of the
twofold rotation representation defined as 𝑟𝛼2 = 𝜂𝛼𝑒−𝑖𝜎3𝜋/2.

which also holds if velocities are anisotropic at X and X′ in a 𝐶4 related manner. The
unitary relation betweenH𝛼

X (𝑅4k) andH𝛼+1
X′ (k) together with our convention of identical

Dirac Hamiltonian chiralities also implies 𝑚𝛼 = 𝑚𝛼+1. The symmetry relation (2.27) can be
compactly expressed as

H⊕ (𝑅4k) = 𝑟⊕4 H⊕ (k) 𝑟⊕†4 , (2.28)

where the requirement of PH symmetry [𝑟⊕4 ,Ξ⊕Ξ] = 0 leaves two choices

𝑟⊕4 = 𝑒−𝑖𝜎3𝜋/4 ⊗ 𝜏1 or 𝑟⊕4 = 𝑒−𝑖𝜎3𝜋/4 ⊗ 𝑖𝜏2, (2.29)

apart from an overall sign that will later be seen to be inconsequential. Here, we denote the
space of stacked Dirac Hamiltonians 𝛼,𝛼+1 by 𝜏𝜇.

Squaring these two representations gives (𝑟⊕4 )2 = +𝑒−𝑖𝜎3𝜋/2 ⊗ I2 or (𝑟⊕4 )2 = −𝑒−𝑖𝜎3𝜋/2 ⊗ I2,
respectively, which is consistent with the two signed options for 𝑟2 above and implies
𝜂𝛼 = 𝜂𝛼+1. Unlike for the truly fourfold fixed points, the representation and sign of 𝑚𝛼 =𝑚𝛼+1
is not uniquely determined from occupied rotation eigenvalue—instead the correspondence is
between the combination of occupied rotation eigenvalue and mass to rotation representation,
shown in Table 2.2.

2.3.3 Dirac Stacks for Topological Interfaces

We now outline how a stacked Dirac model can be constructed to describe a transition of
between 𝐶𝑛-symmetric superconductors with different topological invariants. As stated
above, the stacked Dirac models capture differences between topological phases. Consider
two regions I and O with BdG HamiltoniansHI (k) andHO (k), respectively, understood
as being the regions inside (I) and outside (O) our system of interest. Each system has
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independent occupancies #Π (𝑛)𝑝 , meaning that we can define differences in occupancies:

Δ#Π (𝑛)𝑝 ≡ #Π (𝑛)𝑝 |I −#Π (𝑛)𝑝 |O . (2.30)

For a meaningful description in terms of stacked Dirac models, we require the rotation
operators in both regions O and I to be the same. This is always possible through the addition
of trivial bands to either region, which can safely be added since they do not change the
topological invariants. Once the rotation operator is the same in both systems, each must have
the same total number of each rotation eigenvalue, so #Π (𝑛)𝑝 |I + #̄Π (𝑛)𝑝 |I = #Π (𝑛)𝑝 |O + #̄Π (𝑛)𝑝 |O ,
where #̄ counts unoccupied states. Using PH symmetry which relates occupied and unoccupied
states, we see that these differences are not all independent [cf. Eq. (2.5)]:

Δ#Π (𝑛)𝑝 = −Δ#Π (𝑛)𝑛−𝑝+1. (2.31)

For example, in a 𝐶4-symmetric system one has ten occupancies (Γ1,2,3,4, 𝑀1,2,3,4 and
𝑋1,2 = 𝑋′1,2) to consider, which are in this way reduced to five independent differences, chosen
as Δ#𝑋1, Δ#Γ1, Δ#Γ2, Δ#𝑀1 and Δ#𝑀2.

For each independent difference Δ#Π (𝑛)𝑝 , one adds |Δ#Π (𝑛)𝑝 | Dirac Hamiltonians to the
stack with the appropriate rotation representations and masses. Closing and reopening every
gap by taking 𝑚𝛼→−𝑚𝛼 for all 𝛼 then reproduces the transitionHI (k) →HO (k).

We now address the feature of Dirac Hamiltonians deriving from X/X′, demonstrated in
Table 2.2, which is that the occupation of either eigenvalues 𝑋1 = 𝑖 or 𝑋2 =−𝑖 does not uniquely
determine the sign of the bulk mass nor the rotation representation. Thus, a given change
Δ#𝑋1 may be realised through stacks of two different types of Dirac Hamiltonians. Looking
at Table 2.2, these two types can be distinguished by the sign 𝜂𝛼 of the twofold rotation
operator 𝑟𝛼2 = 𝜂𝛼𝑒−𝑖𝜎3𝜋/2. Let Δ#𝑋±1 denote the contributions to Δ#𝑋1 from Hamiltonians
with 𝜂𝛼 = ±1, such that the overall change in occupation is Δ#𝑋1 = Δ#𝑋+1 +Δ#𝑋−1 . Note
that this decomposition is specific to the construction of a Dirac model, rather than a direct
property of the original Bloch Hamiltonians HI (k) and HO (k). Distinguishing between
Δ#𝑋±1 , as we now explain, allows us to construct a Dirac stack that does not change the
Chern number when 𝑚𝛼→−𝑚𝛼, as we require for the anomalous boundary states we wish
to investigate.

Zero change in the Chern number implies that there should be an equal number of left-
and right-moving modes at the I −O interface. This is equivalent to the statement that there
should be an equal number of Dirac Hamiltonians in the stack with positive and negative bulk
masses (since we consider the scenario where all 𝑚𝛼 change sign across the I−O boundary).
From Table 2.1, it is evident that these bulk masses are uniquely determined from changes in
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occupied rotation eigenvalues, which is not the case for Dirac Hamiltonians derived from gap
closings at X/X′. Looking again at Table 2.2, and recalling that all the Dirac Hamiltonians
have the same chirality, we see that for the same Δ#𝑋+1 and Δ#𝑋−1 the contribution to ΔCh is
opposite because, for a given Π (2)𝑝 being occupied, opposite signs of 𝜂𝛼 imply opposite signs
for 𝑚𝛼. Combining all these observations, we may rewrite the ΔCh = 0 condition as

0 = ΔCh (2.32)

= 2Δ#𝑋−1 −2Δ#𝑋+1 −Δ#Γ1−Δ#𝑀1 +Δ#Γ2 +Δ#𝑀2 (2.33)

= −4Δ#𝑋+1 +2Δ[𝑋] −Δ[𝑀1] +Δ[𝑀2], (2.34)

Taken on their own, changes in rotation invariants [𝑀1], [𝑀2] and [𝑋] of Eq. (2.6) determine
ΔCh mod 4 [123, 56], but with a specific stacked Dirac model realisation we could equate
ΔCh = 0 exactly. (The modulo 4 ambiguity reappears if one does not have access to the Δ#𝑋±1
extra information because changing Δ#𝑋+1 → Δ#𝑋+1 +1 and Δ#𝑋−1 → Δ#𝑋−1 −1 would not
affect Δ[𝑋] but would change ΔCh→ ΔCh− 4.)

2.3.4 Effective Edge Theory

We are interested in what happens at the boundary between systems in different topological
classes, which in our continuum model above occurs when the masses {𝑚𝛼} change sign.
Each bulk gap closing has an associated chiral edge mode localised at the boundary [31, 126].
Its effective edge theory, allowing also for smooth (on the scale of the lattice spacing)
variations in the local boundary direction, can be derived as described in Appendix A.2.1.
The resulting stack of decoupled left- and right-moving chiral edge modes is described by the
edge Hamiltonian

ℎr,k∥ = ℎ
→
r,k∥ ⊕ ℎ

←
r,k∥ , with ℎ𝑠r,k∥ =

⊕
𝛼

ℎ𝛼𝑠r,k∥ , (2.35)

where 𝑠 ∈ {→,←} such that right- and left-moving modes

ℎ𝛼→r,k∥ = +𝑣𝛼𝑘 ∥ and ℎ𝛼←r,k∥ = −𝑣𝛼𝑘 ∥ (2.36)

have been placed in different sub-blocks 5. The subscript ∥ denotes a projection onto the
direction n̂∥ along the edge (i.e., 𝑘 ∥ = k · n̂∥) and the subscript r, indicating the position along
the boundary, is present to allow for the aforementioned smooth boundary variations.

5This 2×2 block-diagonal structure is possible by choosing the original stacking order in Eq. (2.21) to be
such that Dirac Hamiltonians with 𝑚𝛼 < 0 in the bulk appear first.
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Fig. 2.4 Example spectrum along the edge of a 2D superconductor. Each sign change of a
bulk mass 𝑚𝛼 manifests itself as a chiral mode on the edge. (a) The folding process which
takes all HSPs to 𝚪, meaning that all edge modes are centred on 𝑘 ∥ = 0 in the continuum
description. (b) An edge mass term that couples a left-mover to a right-mover, opening up a
gap on the edge.

Having limited ourselves to ΔCh = 0 transitions, there are as many left-movers as right-
movers in the stack. Since gap closings happening at X must also happen at X′ by rotational
symmetry, the corresponding edge modes appear in pairs on the boundary with the same
propagation direction (because their bulk masses and chiralities are the same). We show an
example spectrum for the edge Hamiltonian in Fig. 2.4(a).

The edge Hamiltonian also possesses a PH symmetry that follows from the original PH
symmetry of the bulk. With a particular basis choice for the edge Hamiltonian (detailed in
Appendix A.2.3), the PH operator is simply complex conjugation K and the symmetry is
given by

ℎr,k∥ = −K ℎr,−k∥K . (2.37)

Edge Projections of Rotation Representations

We now describe how the sign of the bulk rotation representation is transmitted to the
representations on the edge, while also recalling the fact that the rotation operator used to
classify periodic Hamiltonians may be different to the rotation operator compatible with the
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𝑟𝛼4,0 𝑟𝛼4,(a1+a2)/2
𝚷𝛼 = 𝚪 𝚷𝛼 = M

+𝑒−𝑖𝜎3𝜋/4 +𝑒−𝑖𝜎3𝜋/4 −𝑒−𝑖𝜎3𝜋/4

−𝑒−𝑖𝜎3𝜋/4 −𝑒−𝑖𝜎3𝜋/4 +𝑒−𝑖𝜎3𝜋/4

Table 2.3 The correspondence from 𝑟𝛼4 ≡ 𝑟𝛼4,0 to the shifted rotation operator at the fourfold
fixed points. The representation changes sign at M but is unchanged at 𝚪.

𝑟⊕4,0 𝑟⊕4,(a1+a2)/2

𝑒−𝑖𝜎3𝜋/4 ⊗ 𝑖𝜏2 𝑒−𝑖𝜎3𝜋/4 ⊗ 𝜏1
𝑒−𝑖𝜎3𝜋/4 ⊗ 𝜏1 𝑒−𝑖𝜎3𝜋/4 ⊗ 𝑖𝜏2

Table 2.4 The correspondence from 𝑟⊕4 ≡ 𝑟⊕4,0 to the shifted rotation operator. These rotation
representations only occur at X/X′ points.

boundary. As shown in Sec. 2.2, these operators are related in terms of the location c of the
rotation centre within a unit cell as

𝑟𝛼𝑛,c = exp
{[𝑖𝚷𝛼 · (1−𝑅−1

𝑛 )c]
}
𝑟𝛼𝑛 . (2.38)

For 𝐶4 symmetry, this is shown explicitly in Tables 2.3 and 2.4.
It is from this operator that the rotation operator of the edge theory must be derived

𝑟𝛼𝑛,c→ 𝑢𝛼𝑛,c. The rotational symmetry for the edge Hamiltonian is then expressed through

ℎ𝑅𝑛r,𝑅𝑛k∥ = 𝑢𝑛,c ℎr,k∥ 𝑢
𝑇
𝑛,c, (2.39)

where 𝑢𝑛,c =
⊕

𝛼 𝑢
𝛼
𝑛,c is the direct sum of all the edge-projected rotation representations, and

𝑢𝑛,c consists only of real elements due to PH symmetry being simply complex conjugation.
For 𝐶4-symmetric systems, 𝑢4,c is block-diagonal with 1× 1 blocks for edge modes

deriving from gap closings at 𝚪 or M, and 2× 2 blocks to transform between X- and X′-
deriving edge modes. These are derived explicitly for 𝐶4 in Appendix A.2.2 and summarised
in Table 2.5.

2.3.5 Boundary Mass Terms

In general, counterpropagating modes on the edges become gapped due to symmetry-allowed
terms that couple these modes. Such gapping terms (or mass terms) 𝜇r couple left-moving
to right-moving modes, appearing as off-diagonal terms in the (previously gapless) edge
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𝚷𝛼 𝑟𝛼4,c 𝜂𝛼,c 𝑢𝛼4,c det𝑢𝛼4,c

𝚪, M +𝑒−𝑖𝜎3𝜋/4 +1 +1 +1
−𝑒−𝑖𝜎3𝜋/4 −1 −1 −1

X/X′ 𝑒−𝑖𝜎3𝜋/4 ⊗ 𝑖𝜏2 −1 𝑖𝜏2 +1
𝑒−𝑖𝜎3𝜋/4 ⊗ 𝜏1 +1 𝜏1 −1

Table 2.5 The edge rotation representations 𝑢𝛼4,c resulting from the bulk representation 𝑟𝛼4,c
at 𝚪, M, and 𝑟⊕4,c at X, X′. The signs of these representations are denoted by 𝜂𝛼,c, where
𝜂𝛼,0 ≡ 𝜂𝛼.

Hamiltonian

ℎr,k∥ =

(
ℎ→r,k∥ + 𝑖𝜆

→
r 𝑖𝜇r

−𝑖𝜇𝑇r ℎ←r,k∥ + 𝑖𝜆
←
r

)
, (2.40)

where we also included the (skew-symmetric) forward scattering matrices 𝜆𝑠r with 𝑠 ∈ {→,←}.
(These terms are ‘forward scattering’ in the sense that they scatter between modes moving in
the same direction.) Because of PH symmetry, 𝜇r and 𝜆𝑠r must be real. To see why 𝜇r can be
interpreted as mass terms, it is illuminating to consider a simplified case where all 2𝑝 edge
modes have the same velocity 𝑣𝛼 = 1 and to ignore all forward-scattering terms, giving the
edge Hamiltonian

ℎ0
r,k∥ =

(
𝑘 ∥I𝑝 𝑖𝜇r

−𝑖𝜇𝑇r −𝑘 ∥I𝑝

)
. (2.41)

Because 𝜇r is a real matrix, it may be decomposed via a singular value decomposition (SVD)
into 𝜇r = 𝑌𝐷𝑊𝑇 where 𝑌 and𝑊 are orthogonal matrices and 𝐷 = diag(Δ1,Δ2, . . . ,Δ𝑝) is a
diagonal matrix. Using the SVD, the edge Hamiltonian can be factorised as

ℎ0
r,k∥ =

(
𝑌 0
0 𝑊

) (
𝑘 ∥I𝑝 𝑖𝐷

−𝑖𝐷 −𝑘 ∥I𝑝

) (
𝑌𝑇 0
0 𝑊𝑇

)
, (2.42)

i.e., it is unitarily equivalent to 𝑝 stacked one-dimensional massive Dirac Hamiltonians. Each
band separation is set by Δ𝛼 and the energy eigenvalues are 𝐸2

𝛼 = 𝑘
2
∥ +Δ2

𝛼. In an SVD, the
matrices 𝑌 and 𝑊 are typically chosen such that all Δ𝛼 ≥ 0. Here, we fix det𝑌 = det𝑊 = 1
by multiplying an appropriate number of rows of 𝑌 (and 𝑊) by minus one, that is, an odd
number of rows when initially det𝑌 = −1 (det𝑊 = −1), and an even number of rows when
initially det𝑌 = +1 (det𝑊 = +1). Keeping ℎ0

r,k∥ the same then requires changing the signs of
the corresponding Δ𝛼 accordingly, such that sgndet𝐷 =

∏
𝛼 sgnΔ𝛼 = ±1, where the minus

sign arises when the number of sign changes in 𝑌 and𝑊 add up to an odd number.
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When rotating from one edge to the neighbouring one using Eq. (2.39), the matrix 𝜇r

transforms as 𝜇r→ 𝜇𝑅r. A Δ𝛼 changing sign under this transformation expresses that there
is a Δ𝛼 mass kink in the edge Dirac theory as we turn from one edge to the neighbouring one.
Such a mass kink binds a Majorana state [151]; it gives rise to a corner Majorana mode in the
system. Considering all Δ𝛼, therefore, a sign change of det𝐷 along a corner results in an
odd number of Majorana bound states, i.e., a single Majorana after the hybridisation of pairs.
Since det𝑌 = det𝑊 = 1, the determinant of 𝐷 changing sign is captured by a relative sign
between sgndet𝜇r and sgndet𝜇𝑅r.

While this observation is illuminating, it relies on all edge modes dispersing in the same
way and the absence of forward-scattering terms. The next subsection will use a more robust
characterisation in terms of Pfaffians that works even in this more general scenario.

Topologically Distinct Boundary Phases

Having seen how back-scattering terms on the edge can be interpreted as mass terms in a
one-dimensional theory, we now reframe this in terms of a topological invariant for Class
D systems in 1D—the Pfaffian invariant, familiar from Sec. 1.1.3. More precisely, this
invariant is the product of Pfaffians at the HSPs in the BZ [25, 29], where the Hamiltonian is
skew-symmetric. The continuum theory we use only captures changes of the topological
invariant along a corner, but not any invariant itself. Such a change in the topological
invariant manifests in a sign change of the Pfaffian at 𝑘 ∥ = 0, a point where the Hamiltonian is
skew-symmetric (guaranteed by PH symmetry, ℎr,k∥=0 = −ℎ∗r,k∥=0). Considering the Pfaffian
at 𝑘 ∥ = 0 (but not at 𝑘 ∥ = 𝜋) is sufficient because having folded the HSPs (see Fig. 2.4) all
edge mass kinks involve edge gap closings in the proximity of 𝑘 ∥ = 0. Of these only the gap
closings at 𝑘 ∥ = 0 are of importance: While forward scattering may cause some of the gap
closings to split away symmetrically from 𝑘 ∥ = 0, we need not account for these because they
only result in pairs of bound states which can hybridise and gap out. More explicitly, we
define 𝐴r ≡ −𝑖ℎr,k∥=0, which is a real and skew-symmetric matrix, and the indicator 𝛿r using
which we shall track changes in the edge invariant [29]

𝛿r = sgnPf 𝐴r = sgn
[(−𝑖)𝑝 Pf ℎr,k∥=0

]
. (2.43)
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We can also verify that this gives the same result as our simplified example ℎ0
r,k∥=0 introduced

above. The Pfaffian of 𝐴0
r = −𝑖ℎ0

r,k∥=0 equals

Pf
(
𝐴0

r

)
= det

(
𝑌 0
0 𝑊

)
Pf

(
0 𝐷

−𝐷 0

)
= Pf

(
0 𝐷

−𝐷 0

)
(2.44)

= (−1)𝑝(𝑝−1)/2 det𝐷, (2.45)

where we used that det𝑌 = det𝑊 = 1. As the matrix dimension 𝑝 does not change around a
corner, sign changes in Pf

(
𝐴0

r
)

thus capture sign changes in det𝐷. We emphasize, however,
that Eq. (2.43) goes beyond the counting argument for ℎ0

r,k∥=0, as it also takes into account
forward-scattering terms and allows different velocities 𝑣𝛼.

2.4 Bulk Rotation Invariants and Corner Majoranas

The bulk rotational symmetry has direct implications for the Pfaffian invariant 𝛿r that
distinguishes topological phases along the edge. Using the rotational symmetry relation of
Eq. (2.39), which also holds for 𝐴r, we use a Pfaffian identity to assess the difference in
topology for neighbouring edges as follows:

𝛿𝑅𝑛r = sgnPf (𝐴𝑅𝑛r) = sgnPf (𝑢𝑛,c𝐴r𝑢
𝑇
𝑛,c) = sgnPf (𝐴r) det𝑢𝑛,c

= 𝛿r det𝑢𝑛,c, (2.46)

where we used that det𝑢𝑛,c = ±1 since 𝑢𝑛,c is orthogonal. Thus, the Pfaffian invariants for
edges related by 𝑅𝑛 are the same only if det𝑢𝑛,c = +1.

For det𝑢𝑛,c = −1, neighbouring edges are topologically distinct and consequently must
harbor an odd number of Majorana states bound between them. The topological index
Υ(𝑛)c = 0,1 equal to the number (modulo 2) of Majorana zero modes localised between
neighbouring edges is therefore 6

(−1)Υ(𝑛)c = det𝑢𝑛,c. (2.47)

6det𝑢𝑛,c = +1 corresponding to the case without boundary Majorana bound states is also consistent with the
fact that if det𝑢𝑛,c = +1, then for a circular boundary the transformation ℎr,k→ ℎ𝑅𝑛r,𝑅𝑛k could be achieved
via many infinitesimal orthogonal transformations (connected to the identity). There would therefore exist
a continuous deformation between the two Hamiltonians that does not close any gaps and respects all the
symmetries, thereby making them topologically equivalent.
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Note that the sign of det𝑢𝑛,c =
∏
𝛼 det𝑢𝛼𝑛,c flips with each addition onto the stack of a

representation with det𝑢𝛼𝑛,c = −1. It is also reassuring that had we (arbitrarily) chosen the
basis states of the edge Hamiltonian to transform trivially under the negative representation
instead (amounting to redefining 𝑢𝛼𝑛,c→−𝑢𝛼𝑛,c), then this index would be unchanged since
det𝑢𝑛,c→ (−1)2𝑝 det𝑢𝑛,c = det𝑢𝑛,c.

Another way to derive higher-order surface signatures for topological crystalline phases
[37, 46, 129, 152] is the construction of a minimal set of mutually anticommuting mass
matrices Ω ≡ {Ω𝑖} (with {Ω𝑖,Ω 𝑗 } = 2𝛿𝑖 𝑗 ) that also anticommute with a (simplified) model
surface Hamiltonian. These mass terms are added to the surface in a symmetry-respecting
manner, where the transformation properties of Ω𝑖 under crystalline symmetry operations
dictate the possible existence of gapless regions on the boundary. The presence of anomalous
surface states is predicted from the cardinality of Ω. However, such an approach is not
immediately applicable to our edge Hamiltonian Eq. (2.40) because 𝜇r is a generic mass
term that may not be constructed from Ω as 𝜇r =

∑
𝑖 𝜖
𝑖
rΩ𝑖 everywhere along the boundary7.

Our edge Hamiltonian may also contain forward scattering terms 𝜆𝑠r that do not follow this
prescription. An advantage of our Pfaffian invariant approach is therefore that it swiftly
demonstrates the relation between boundary Majoranas and rotation representations, without
any special algebraic structure in the boundary Hamiltonian beyond that required by PH
symmetry.

2.4.1 Path Independence

It should be pointed out that because the original classification [56] is in terms of a stable
(i.e., robust under the addition of trivial bands) equivalence, many different stacked Dirac
models can realise the same change in topological phase. Conversely, it means that every
phase change can be realised through many ‘paths’ of gap closings in a phase diagram; for
example a change in phase Δ(Ch, [𝑋], [𝑀1], [𝑀2]) = (0,0,1,1) could be realised through
Δ(#Γ1,#Γ2) = (−1,−1) or through Δ(#𝑀1,#𝑀2) = (1,1). For the det𝑢𝑛,c index to be truly
topological, it must be independent of the path of gap closings chosen to go from one phase
to another. We demonstrate that this is so focusing on the 𝐶4-symmetric case below.

In our 𝐶4-symmetric Dirac construction, multiple possible paths arise because there are
six independent parameters for gap closings [namely Δ(#𝑋−1 ,#𝑋+1 ,#Γ1,#Γ2,#𝑀1,#𝑀2)] but
only four constraints in the form of the four topological invariants Δ(Ch, [𝑋], [𝑀1], [𝑀2]),
leaving two degrees of freedom. Because of the additive structure of the invariants, these two
degrees of freedom define a plane in the space of Δ(#𝑋−1 ,#𝑋+1 ,#Γ1,#Γ2,#𝑀1,#𝑀2). This

7Furthermore, a set Ω will not always be closed under rotation Ω𝑖 → 𝑢𝑛,cΩ𝑖𝑢
𝑇
𝑛,c ∉ Ω when all the Dirac

Hamiltonians in the stack are allowed to be different.
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plane can be spanned by two gap closing patterns which do not change the phase, namely
Δ(#𝑋−1 ,#Γ1,#𝑀1) = (1,1,1) andΔ(#𝑋−1 ,#Γ2,#𝑀2) = (−1,1,1). The first set of of occupation
number changes is consistent with adding a trivial Dirac (sub)stack with Γ(4)𝑝 = 𝑒𝑖𝜋/4, and
the second with adding a trivial Dirac stack with Γ(4)𝑝 = 𝑒3𝑖𝜋/4, where both additions are to
the inside (I) region, with their PH conjugates appearing outside (O). One may verify that
the Dirac (sub)stacks implementing these changes in occupation number have det𝑢4,c = +1,
both for c = 0 and c = (a1 +a2)/2. This means that each plane in the parameter space has a
definite value of det𝑢4,c.

We now explain why trivial bands cannot change det𝑢4,c. In our Dirac model, adding
PH conjugate pairs of trivial bands to I and O correspond to Dirac (sub)stacks that upon
𝑚𝛼→−𝑚𝛼 leave topological invariants unchanged. Consider the minimal stack involving
Dirac Hamiltonians H1

𝚪, H2
M, and H⊕ = H3

X ⊕H4
X′ , at 𝚪 and M and X/X′ respectively.

Requiring Δ[𝑀𝑖] = Δ[𝑋] = 0 sets 𝑀𝑝 = Γ𝑝 and 𝑋𝑝 = (Γ𝑝)2. (In this paragraph we understand
Π (4)𝑝 to mean the occupied eigenvalue of this minimal stack.) The value of Γ𝑝 sets the sign of
𝑚1 and 𝜂1, and consequently sgn𝑚2 = sgn𝑚1 and 𝜂2 = 𝜂1 (see Tables 2.1 and 2.3). Ensuring
ΔCh = 0 then requires us to choose a mass at X/X′ (𝑚3 = 𝑚4) with opposite sign to 𝑚1,2.
Together with 𝑋𝑝 = (Γ𝑝)2 this singles out a specific 𝜂3 (Tables 2.2 and 2.4). (Recall from
Table 2.5 that the signs 𝜂𝛼 are associated with a specific det𝑢𝛼4,0.) Crucially, no matter what
the value of Γ𝑝 is we always find det𝑢1

4,c det𝑢2
4,c det𝑢3

4,c = 1, both for c = 0 and c = (a1+a2)/2.
Specifically: for c = 0, det𝑢1

4,0 det𝑢2
4,0 = 1 and det𝑢3

4,0 = 1 (Tables 2.1 and 2.3); and for
c = (a1+a2)/2, both det𝑢2

4,(a1+a2)/2 and det𝑢3
4,(a1+a2)/2 change sign (Tables 2.2 and 2.4) while

det𝑢1
4,(a1+a2)/2 stays unchanged.

The corner mode index is therefore independent of the exact sequence of gap closings
leading to a particular topological phase.

2.4.2 Constructing Topological Index for Corner States

Having thus established the path independence, and thus the topological nature of our det𝑢𝑛,c
index, we must be able to express it in terms of the bulk topological invariants. As seen
from Table 2.5, only certain bulk rotation representations {𝑟𝛼4,c, 𝑟⊕4,c} lead to edge rotation
representations with det𝑢𝛼4,c = −1. In turn, these {𝑟𝛼4,c, 𝑟⊕4,c} are characteristic of changes
in the occupation number of certain rotation eigenvalues. Thus, by tracking changes in
occupation of a subset of rotation eigenvalues, one may deduce the number of edge modes
with det𝑢𝛼𝑛,c = −1, giving us det𝑢𝑛,c. We expect a Z2-valued index Υ(𝑛)c defined, as in
Eq. (2.47), by (−1)Υ(𝑛)c ≡ det𝑢𝑛,c, where Υ(𝑛)c counts the number of Majorana modes between
neighbouring edges.
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We now describe how such a relation is obtained in 𝐶4-symmetric systems. The central
idea is to track how the changes Δ(#𝑋−1 ,#𝑋+1 ,#Γ1,#Γ2,#𝑀1,#𝑀2) influence det𝑢𝑛,c. We
start with the case of the rotation centre being at c = 0. Consider the fourfold fixed point 𝚪:
We see from Tables 2.1 and 2.5 that for a change in occupation Δ#Γ2, there will be |Δ#Γ2 |
Dirac Hamiltonians added to the stack that have det𝑢𝛼4,0 = −1. On the other hand, the |Δ#Γ1 |
other Dirac Hamiltonians at 𝚪 have det𝑢𝛼4,0 = 1 so need not be counted. Similarly, we should
also count |Δ#𝑀2 | but not |Δ#𝑀1 |. As for the Dirac Hamiltonian pair at the X/X′ points,
Tables 2.2 and 2.5 show that we should count |Δ#𝑋+1 | because det𝑢𝛼4,0 = −𝜂𝛼 for these Dirac
Hamiltonians.

Thus, recalling that det𝑢4,c =
∏
𝛼 det𝑢𝛼4,c, the index for c = 0 is

Υ(4)0 = Δ#Γ2 +Δ#𝑀2 +Δ#𝑋+1 mod 2, (2.48)

where due to the modulo 2 we could drop the absolute value symbols. When c = 1
2 (a1 +a2),

however, one can see from Tables 2.3 and 2.4 that representations at M and X,X′ acquire a
minus sign, so that by analogous arguments

Υ(4)(a1+a2)/2 = Δ#Γ2 +Δ#𝑀1 +Δ#𝑋−1 mod 2. (2.49)

This shifted index and the original are related through

Υ(4)(a1+a2)/2 = Υ(4)0 +Δ#𝑀1 +Δ#𝑀2 +Δ#𝑋1 mod 2 (2.50)

= Υ(4)0 +Δ[𝑀1] +Δ[𝑀2] +Δ[𝑋] mod 2. (2.51)

The rotation centre thus only influences the existence of Majoranas on the edge if
Δ𝜈 =Δ[𝑀1] +Δ[𝑀2] +Δ[𝑋] mod 2≠ 0. Recognizing that 𝜈 is precisely the weak topological
invariant in 𝐶4-symmetric systems [56], Eq. (2.51) can be seen to express the combined effect
of the weak invariant and the rotation centre announced in the Introduction. It remains to
rewrite Υ(4)0 purely in terms of rotation invariants, which is possible using ΔCh = 0 derived
earlier. Substituting Δ#𝑋+1 from Eq. (2.34), and using that Υ(4)0 = Δ[𝑀2] +Δ#𝑋+1 mod 2 we
get

Υ(4)0 =
1
4
(Δ[𝑀1] +3Δ[𝑀2] −2Δ[𝑋]) mod 2. (2.52)

Summarizing the bulk-boundary correspondence in one equation, we have

Υ(4)c =
1
4
(Δ[𝑀1] +3Δ[𝑀2] −2Δ[𝑋]) + 1

2𝜋
ΔG𝜈 · c mod 2, (2.53)
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Fig. 2.5 (a) Brillouin zone for 𝐶2-symmetric models. All HSPs are twofold fixed points, i.e.,
they map to themselves under a 𝐶2 rotation. (b) Brillouin zone for 𝐶6-symmetric models.
Only 𝚪 is a sixfold fixed point, whereas the threefold fixed point K and K′ map to each
other under a sixfold rotation. The twofold fixed points M, M′, and M′′ form an orbit
M→M′→M′′ under sixfold rotation.

where ΔG𝜈 = Δ𝜈(b1 +b2) is the weak index vector (in terms of reciprocal lattice vectors b𝑖
satisfying a𝑖 ·b 𝑗 = 2𝜋𝛿𝑖 𝑗 ). This index between rotation invariants and boundary Majorana
bound states is one of the central predictions of our stacked Dirac approach.

Although the intermediate steps made use of ‘extra’ information Δ#𝑋+1 specific to the
stacked Dirac model construction, the physical conclusion depends only on the topological
invariants. The way that similar indices have been derived before is to find example systems
with corner modes (corner charge) and appeal to the linearity of indices in terms of the
invariants [121, 56, 71] to reconstruct their form. In contrast, here we have shown how
any continuum description consistent with a given change of bulk topological invariants of
rotationally symmetric topological superconductors encodes transformation properties of
adjacent edge Hamiltonians and thus the topological index for corner Majorana modes.

2.5 Other Rotational Symmetries

We now briefly outline how our construction is applied to different rotational symmetries,
namely for𝐶2- and𝐶6-symmetric systems. The𝐶2-symmetric BZ contains only twofold fixed
points, and so is contained within the 𝐶4 construction, but the 𝐶6 BZ contains threefold and
sixfold fixed points that are not contained in the 𝐶4 case and require some further discussion.
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2.5.1 Twofold Symmetry

The 𝐶2 case is simpler in some respects than the 𝐶4 case because all the HSPs are twofold
fixed points and so we keep this discussion brief. The ΔCh = 0 condition is now:

0 = ΔCh =Δ#𝑋+1 −Δ#𝑋−1 +Δ#𝑌+1 −Δ#𝑌−1
+Δ#𝑀+1 −Δ#𝑀−1 +Δ#Γ+1 −Δ#Γ−1 ,

(2.54)

where we again split contributions according to 𝜂𝛼, the sign of the twofold rotation operators
𝑟𝛼2 . This can be rewritten in terms of the 𝐶2 rotation invariants (now [𝑋] = #𝑋1 − #Γ1,
[𝑌 ] = #𝑌1−#Γ1 and [𝑀] = #𝑀1−#Γ1):

0 =−Δ[𝑋] +Δ[𝑌 ] +Δ[𝑀] −4Δ#Γ1

+2(Δ#𝑋−1 +Δ#𝑌−1 +Δ#𝑀−1 +Δ#Γ−1 ),
(2.55)

which reproduces the Ch mod 2 relation of Ref. [56]. Counting the parity of negative
representations, we have

Υ(2)0 = Δ#𝑋−1 +Δ#𝑌−1 +Δ#𝑀−1 +Δ#Γ−1 mod 2, (2.56)

which we may combine with Eq. (2.55) to write

Υ(2)0 =
1
2
(Δ[𝑋] +Δ[𝑌 ] +Δ[𝑀]) mod 2 (2.57)

when the physical rotation centre is at the centre of the unit cell (c = 0). In 𝐶2-symmetric
systems, there are more choices for c than with 𝐶4 symmetry: both c = a1/2 and c = a2/2
in addition to c = (a1 + a2)/2. The 𝐶2 case also has two independent weak invariants
𝜈1 = [𝑋] + [𝑀] mod 2 and 𝜈2 = [𝑌 ] + [𝑀] mod 2, combined into the weak invariant vector
ΔG𝜈 = Δ𝜈1b1+Δ𝜈2b2. Again, the indices for systems with different rotation centres are found
to be related through

Υ(2)c = Υ(2)0 +
1

2𝜋
ΔG𝜈 · c mod 2. (2.58)

To arrive at Eq. (2.58), we used Eq. (2.20) with 𝑅𝑇2 = −1 which shows that now the sign of
the representation can change at X, Y, and M depending on G𝜈 and c. For example, when
considering c = a1/2, one starts by counting

Υ(2)a1/2 = Δ#𝑋+1 +Δ#𝑌−1 +Δ#𝑀+1 +ΔΓ−1 mod 2, (2.59)

consistent with the above.
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2.5.2 Sixfold Symmetry

The BZ of a 𝐶6-symmetric system has three different sets of high-symmetry points: One
sixfold fixed point at 𝚪, two threefold fixed points at K and K′, and three twofold fixed points
at M, M′ and M′′; cf. Fig. 2.5(b). Within a 𝐶6-symmetric lattice, there is only one centre of
sixfold rotation at c = 0 so it need not be specified. The bulk is characterised by the Chern
number and the two rotational invariants [56]

[𝑀] = #𝑀1− (#Γ1 +#Γ3 +#Γ5) (2.60)

[𝐾] = #𝐾1− (#Γ1 +#Γ4). (2.61)

Any gap closing away from𝚪 can be implemented analogously to the previously established
description of stacked Dirac models at X/X′; cf. Sec. 2.3.2. Gap closings at K/K′ require a
stack of two Dirac Hamiltonians, and gap closings at M/M′/M′′ require a stack of three Dirac
Hamiltonians.

We must proceed slightly differently with gap closings at 𝚪, however. While a simple
Dirac Hamiltonian [Eq. (2.22)] is sufficient to describe gap closings that change #Γ1 or #Γ3

(and accordingly #Γ6 or #Γ4), a 2×2 Hamiltonian describing changes to #Γ2 (and hence #Γ5)
with rotation representation 𝑟𝛼6 = ±𝑖𝜎3 requires cubic momentum terms [150]:

H𝛼
𝚪 (k) = (𝑣𝛼𝑘)3(cos(3𝜃)𝜎1 + sin(3𝜃)𝜎2) +𝑚𝛼𝜎3. (2.62)

Deriving an edge theory in the same way as in Sec. A.2.1 is impeded by the presence of
these non-linear terms, although we can conclude from the Chern number that a transition
𝑚𝛼→−𝑚𝛼 would harbor three gapless modes.

Our strategy will instead be to add trivial bands such that the transition for the whole system
has Δ#Γ5 = 0, which can be modelled with only linear Dirac Hamiltonians. Specifically, a
trivial band with sixfold eigenvalue Γ5 = −𝑖 has threefold eigenvalue (Γ5)2 = (Γ∗5)2 = −1 = 𝐾2

and twofold eigenvalue (Γ5)3 = 𝑖 = 𝑀1. Thus, there exists a trivial superconductor that,
when transitioning to its PH-conjugate, changes Δ#Γ5 = 1 and Δ#𝑀1 = 1 [and Δ#𝐾2 = 0 in
accordance with Eq. (2.31)]. Adding multiples of this trivial superconductor allows us to
trade a description involving Eq. (2.62) at 𝚪 for one with three Dirac models at M/M′/M′′.

By associating the masses and rotation representations of Dirac Hamiltonians with
occupied rotation eigenvalues as in the main text, we find

0 = ΔCh = −Δ#Γ1 +Δ#Γ3 +3Δ#Γ+5 −3Δ#Γ−5
−2Δ#𝐾1 +3Δ#𝑀−1 −3Δ#𝑀+1 ,

(2.63)
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consistent with the Ch mod 6 relation for the invariants in Ref [56]. The need to split
contributions according to 𝜂𝛼 again originates from 𝑖𝜎3 being a traceless representation (see
Sections 2.3.2 and 2.3.3).

Counting negative representations and considering Δ#Γ5 = 0, the index is

Υ(6)0 = Δ#𝐾1 +Δ#Γ3 +Δ#𝑀−1 mod 2, (2.64)

where |Δ#𝐾1 | is counted because 𝑟⊕6 = 𝑒−𝑖𝜎3𝜋/6 ⊗ 𝜏1 is the only rotation representation for
Dirac Hamiltonians at K/K′, which becomes 𝑢⊕6 = 𝜏1 on the edge. Gap closings at M/M′/M′′
permit rotation representations

𝑟⊕6 = ±𝑒−𝑖𝜎3𝜋/6 ⊗
©«
0 0 1
1 0 0
0 1 0

ª®®¬ , (2.65)

which have det𝑢⊕6 = ±1 and hence |Δ#𝑀−1 | is also counted. Upon substitution of Eq. (2.63)
for Δ#𝐾1, the index is simply

Υ(6)0 =
1
2
Δ[𝑀] mod 2. (2.66)

We have thus derived the second-order bulk-boundary correspondence for the 𝐶6-symmetric
case using our stacked Dirac framework. This index coincides with the index for Majoranas
bound to disclinations in a 𝐶6-symmetric crystal [56].

2.5.3 Other Rotation Representations for the Superconducting Order
Parameter

When determining the rotation operator of the BdG Hamiltonian from the symmetry of
the underlying crystal, one must also consider the symmetry of the superconducting order
parameter. A BCS pairing term Δ̂+ Δ̂† is different to the normal-state part of the Hamiltonian
because it need only be invariant up to a gauge transformation under the act of rotation �̂�𝑛,
so that �̂�𝑛Δ̂�̂�−1

𝑛 = 𝑒𝑖Θ𝑛Δ̂ [50]. In the first-quantised picture, the off-diagonal pairing term
Δ(k) = −Δ𝑇 (−k) transforms under rotation as [52]

R(k)Δ(k)R𝑇 (−k) = 𝑒𝑖Θ𝑛Δ(𝑅𝑛k), (2.67)
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where the action of rotation on momentum space operators

�̂�𝑛𝑐
†
𝛼 (k) �̂�−1

𝑛 = 𝑐†𝛽 (𝑅𝑛k)R𝛽𝛼 (k) (2.68)

was derived in Sec. 2.2.1. The symmetry of the pairing is therefore defined by a one-
dimensional rotation representation 𝑒𝑖Θ𝑛 where Θ𝑛 = 2𝜋ℓ𝑛/𝑛 and ℓ𝑛 ∈ Z𝑛, arising from the
angular momentum of Cooper pairs. The rotation operator for the BdG Hamiltonian should
therefore be

𝑟𝑛 (k) =
(
R(k)

𝑒𝑖Θ𝑛R∗(−k)

)
(2.69)

to reproduce the symmetry relation Eq. (2.13). (The “rotation” operator 𝑟𝑛 (k) is now the
composition of physical rotation with a gauge transformation𝑈 = 𝑒𝑖Θ𝑛/2𝑒−𝑖Θ𝑛𝜎3/2 [50].) This
implies that the algebraic relation between PH and rotation operators is [52]

Ξ𝑟𝑛 (k)Ξ−1 = 𝑒−𝑖Θ𝑛𝑟𝑛 (−k), (2.70)

which is different to the ℓ𝑛 = 0 relation that reduced to commutation at HSPs. We now discuss
the consequences of ℓ𝑛 ≠ 0 for the bulk-boundary correspondence.

One can always define an alternative operator 𝑟𝑛 (k) = 𝑒−𝑖Θ𝑛/2𝑟𝑛 (k) that commutes with
PH symmetry at HSPs:

Ξ𝑟𝑛 (k)Ξ−1 = 𝑟𝑛 (−k). (2.71)

When ℓ𝑛 is even, 𝑟𝑛 (k) is a spinful operator satisfying 𝑟𝑛𝑛 =−𝟙 for which we can use our stacked
Dirac model construction to derive a valid corner mode index in terms of the eigenvalues of
𝑟𝑛 (k). This may be translated to an index in terms of the eigenvalues of 𝑟𝑛 (k) by recalling
the labeling convention in Eq (2.3), which gives an equivalence

Π (𝑛)𝑝 ⇐⇒ Π̃ (𝑛)
𝑝−ℓ𝑛/2 (2.72)

between the eigenvalues of a state under both operators. Thus the case of even ℓ𝑛 is
qualitatively identical to the ℓ𝑛 = 0 case.

When ℓ𝑛 is odd, however, it has been argued by Geier et al. [49] that the boundary
classification does not permit a second-order (nor weak) phase. This qualitative difference
arises because 𝑟𝑛 (k) now behaves like a spinless operator satisfying 𝑟𝑛𝑛 = +𝟙. The real
eigenvalues of 𝑟𝑛 (k) are mapped onto themselves under PH symmetry, rather forming
complex conjugate pairs (as in Figure 2.2), leading to a different bulk classification.
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2.6 Examples

The numerics for this section were performed by Jan Behrends.
We illustrate our approach using a lattice model. Consider a generalisation of two models

introduced by Benalcazar et al. that are realised on a square lattice with primitive lattice
vectors a1 = 𝑎x̂, a2 = 𝑎ŷ [56]. The combinations a′1 = a1 + a2 and a′2 = −a1 + a2 connect
next-nearest-neighbour sites. The BdG Hamiltonian

𝐻 (k) =
(
𝑓1(k)𝜎3 +𝑔1(k)𝜎2 𝑚(𝜎3− 𝑖𝜎0)
𝑚(𝜎3 + 𝑖𝜎0) 𝑓2(k)𝜎3 +𝑔2(k)𝜎2

)
(2.73)

with the onsite coupling 𝑚 and the two functions

𝑓𝑖 (k) = cos𝜙cos(k ·a𝑖) + sin𝜙cos
(
k ·a′𝑖

)
(2.74)

𝑔𝑖 (k) = cos𝜙 sin(k ·a𝑖) + sin𝜙 sin
(
k ·a′𝑖

)
(2.75)

describes a 𝐶4-symmetric superconductor with PH symmetry Ξ = 𝜎1K and fourfold rotation

𝑟4 =

(
−𝑖𝜎3

𝜎0

)
(2.76)

where 𝑟4
4 = −𝟙. (All units of energy are absorbed into the Hamiltonian.) As discussed in

Sec. 2.2, each gapped phase is characterised by a set four invariants, which we show in
the phase diagram in Fig. 2.6. Changing the parameters 𝜙→ 𝜙 + 𝜋 and 𝑚→−𝑚 results
in 𝐻→−𝐻 hence in Fig. 2.6 we consider only positive 𝑚 values. For |𝑚 | > 1, the onsite
coupling dominates and the Hamiltonian is trivial, independently of the parameter 𝜙.

Two regimes are relevant for our classification: phase I around (𝜙,𝑚) = (0,0) and phase
II around (𝜙,𝑚) = (𝜋/2,0). Phase I is characterised by Υ(4)0 = 1 and Υ(4)(a1+a2)/2 = 0, thus, it
only supports corner modes when the physical rotation centre is in the centre of a unit cell (cf.
Sec. 2.2.1 and Appendix A.1 for our notion of the unit cell). To couple counterpropagating
chiral edge modes, we add a density-wave-type boundary perturbation that respects rotation
invariance but has periodicity of two unit cells. Specifically, on each edge we couple every
second pair of lattice sites via a nearest-neighbour hopping term 𝑖𝑡𝑐†𝑗𝜏3𝑐 𝑗+1 (where 𝜏𝑖 acts
on the outer degree of freedom) to break translation invariance and open a gap. (In Fig. 2.8
we show the boundary perturbation together with the 𝑚 = 𝜙 = 0 limit of the bulk system.)
We show the energy eigenvalues for square lattices with 𝐿× 𝐿 sites in Fig. 2.7(a). When 𝐿
is odd, the rotation centre is in the centre of a unit cell, when 𝐿 is even, it is at its corner.
Corner modes therefore only arise when 𝐿 is odd. Phase II, however, is characterised by
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Fig. 2.6 Phase diagram for the lattice Hamiltonian Eq. (2.73). The black lines denote gap
closings at 𝚪, the black dashed lines at M and the gray lines at X,X′. In panel (d), the black
stripes in phases with Ch = 0 denote values of the topological index predicting corner modes.
Diagonal stripes Υ(4)0 = 1 and Υ(4)(a1+a2)/2 = 0, and a crossed pattern Υ(4)0 = Υ(4)(a1+a2)/2 = 1. The
gray square and black triangles mark the parameters used in Fig. 2.7(a) and (b), respectively.
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Fig. 2.7 Energy eigenvalues of the Hamiltonian defined in Eq. (2.73) with a boundary
perturbation (with 𝑡 = 0.025) for a finite square lattice with 𝐿× 𝐿 sites. The different colours
denote the rotation eigenvalue 𝑒𝑖𝜋/4(2𝑝−1) and the different symbols distinguish different
rotation centres (crosses and circles corresponding to even and odd 𝐿, respectively). In panel
(a), we show an example of phase I with 𝜙 = 𝜋/32 and 𝑚 = 0.4. The system only supports
gapless corner modes for odd 𝐿, which corresponds to a physical rotation centre in the centre
of a unit cell. In panel (b), we show an example of phase II with 𝜙 = 17𝜋/32 and 𝑚 = 0.4.
The corner modes remain for both rotation centres, i.e., both even and odd 𝐿. We choose the
logarithmic scale of the 𝑦 axis to visualise the exponential decrease in energy.

Υ(4)0 = Υ(4)(a1+a2)/2 = 1, meaning that the presence of corner modes does not depend on the
position of the rotation centre, as we show in Fig. 2.7(b).

In phase II, the surface gap closes when 𝑚 = 0. Then, the corner modes delocalise
along the edge and their energy in any finite system increases accordingly. When tuning the
parameters of the Hamiltonian to cross 𝑚 = 0, the localisation length of the corner modes
first increases when approaching 𝑚 = 0 and then decreases again with increasing surface gap
size. Thus, the presence of corner modes solely depends on bulk properties. Corner modes
may at most delocalise for fine-tuned points in parameter space, but they cannot be removed
by attempting a surface-only topological phase transition via a surface gap closing.

Using the above phases, more phases can be constructed by stacking different copies of
this model. For example, stacking phases I and II results in hybridisation of the corner modes,
such that Υ(4)0 = 0 and Υ(4)(a1+a2)/2 = 1, i.e., only systems with the physical rotation centre at the
corners of the unit cell support corner modes. Stacking the four primitive models introduced
in Ref. [56] enables us to construct models that realise all possible combinations of the bulk
invariants.
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Fig. 2.8 Lattice model that demonstrates the importance of the rotation centre. The
Hamiltonian (2.73) at 𝜙 = 𝑚 = 0 only contains terms, illustrated by the solid blue lines, that
couple neighbouring Majorana modes, illustrated by the black circles; cf. Ref. [56]. In
this case, Majorana modes at the edge are completely decoupled from the bulk and do not
contribute to the Hamiltonian, i.e., all edge modes have zero energy. This degeneracy can
be lifted by a density wave [56] modelled by coupling every second nearest-neighbour site
on the edge (dashed blue lines). (a) When the rotation centre is in the centre of a unit cell,
any coupling that respects rotational invariance is bound to leave Majoranas at the corners
uncoupled (red circles). This completely decoupled case is topologically equivalent to any
case with a finite localisation length of the corner modes, as for example considered in
Fig. 2.7. (b) However, when the rotation centre is at the corner of a unit cell, it is possible to
open a surface gap without Majorana bound states.

2.7 Conclusion

In this Chapter, we formulated a second-order bulk-boundary correspondence for 𝐶𝑛-
symmetric 2D crystalline superconductors: We related the bulk topological invariants of
Ref. [56] to a topological index Υ(𝑛)c accounting for the presence of Majorana corner states
in systems with 𝐶𝑛-symmetry-respecting boundaries. The exact form of the corner index
depends on the interplay of the weak invariants and the location of the physical rotation
centre with respect to the unit cell. In particular, certain systems only support corner modes
when the rotation centre is in the centre of a unit cell, while other systems require it to
be at the unit cell boundary. (These statements have no unit-cell-choice ambiguity: For
a well-defined bulk-boundary correspondence we must use unit-cell choices described in
Sec. 2.2 and Appendix A.1.) Our approach to identify the corner index is based on stacked
Dirac Hamiltonians. It is thus extendable to other crystal symmetries, as long as they can be
represented for a minimal model of stacked Dirac Hamiltonians.

The index we find is consistent with previous classification schemes in rotationally
symmetric superconductors. For example, Teo and Hughes found an invariant for Majorana
modes trapped at lattice defects that strongly resembles the indices given in Eqs. (2.52)
and (2.53) [121, 56]. When predicting trapped Majorana modes, the Burgers vector of a
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lattice defect only matters when the weak invariant is nonzero, similar to the fact that Υ(𝑛)c=0
and Υ(𝑛)c≠0 may only be different if the weak invariant is nonzero.

Invoking a counting argument, Ref. [121] noted that the invariants constructed for lattice
defects can also be used to predict corner modes in finite systems. Our work elucidates why
this is so from an entirely different viewpoint: We established how bulk invariants relate
to the transformation properties of adjacent edge Hamiltonians, the latter having become
the unifying perspective for constructing various examples of higher-order topological
phases [46, 37, 129].

We illustrated our results using lattice models. In particular, we showed that the physical
rotation centre in finite systems may indeed give rise to different corner mode configurations.
Furthermore, we explicitly demonstrated that the bulk-boundary correspondence is robust
against gap closings at the boundary, i.e., that the presence of corner modes is purely
determined by bulk quantities that relate different edges to another. In all lattice model
examples, we identified corner modes using the scaling of the energies: For finite 2D square
samples of size 𝐿× 𝐿, the energy of the second-order bound states decays exponentially with
𝐿.

The latter scaling observation may be particularly helpful for future studies considering
hybrid higher-order topology [131], expected to arise in our systems when we allow for
nonzero Chern number. In such cases, the quantised energy levels of the delocalised chiral
edge modes are expected to show a 1/𝐿 decay with increasing 𝐿, in sharp contrast with the
exponential decay of the second-order bound state energies.





Chapter 3

Quantum tunnelling in the presence of a
topology-changing fermionic bath

3.1 Motivation

In the previous Chapter, our concern was the gapless states that formed at the interface
between topologically distinct (crystalline) superconductors. Here, we are interested in an
effect purely attributed to the bulk gap closing between topological phases. This is inherent to
any topological phase transition, regardless of the nature of any associated gapless boundary
states, so we expect qualitative results from this Chapter to be applicable to any symmetry
class. This effect has to do with quantum tunnelling.

Quantum tunnelling of a particle can be significantly altered in the presence of a
bath. At zero temperature, a gapless bath reduces the tunnelling amplitude by a factor
that is exponentially small in the system-to-bath coupling and the tunnelling potential
width [153, 154]. For gapped baths, however, the exponent decreases with the ratio of
the bath’s gap and the oscillation frequency characterizing the minima of the tunnelling
potential [155–157], and so the bath can be neglected for large gaps. This feature is crucial for
the coherence of Josephson-junction-based superconducting qubits [158, 159, 157, 160, 108],
where the position of the tunnelling “particle” is the superconducting phase difference 𝜙;
in these systems the gapped fermionic bath of electrons merely renormalises the junction’s
capacitance [161, 162].

In-gap fermionic levels change this picture [161, 163]: For example, an approximate [164,
165] or symmetry-enforced [25, 166, 113, 167, 168, 163] crossing of in-gap levels along
the tunnelling path acts to suppress quantum tunnelling. In this Chapter, we consider a
more dramatic scenario: What happens if the bath is gapped at the minima of the tunnelling
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potential, but undergoes a bulk gap closing (i.e., merging of level continua, instead of a single
level crossing) when the particle tunnels between the minima?

Such gap closings can be enforced by topology: When the bath Hamiltonian depends on
the particle coordinate such that potential minima correspond to gapped bath Hamiltonians but
with different minima corresponding to different values of a suitable Hamiltonian topological
invariant [12, 127, 169, 170], then the robustness of this invariant under deformations that
do not close the bulk gap implies that the bath must undergo a bulk gap closing somewhere
along the tunnelling path. This scenario is different from previous works on gauge theories
with topologically distinct vacua [171, 172, 109, 110]: there, topology is that of gauge field
configurations, i.e., of instantons, while for us the crucial form topology is fermionic, in the
sense of topological insulators and superconductors [12, 127, 169].

Instantons, however, also enter the scenario we aim to study, as they provide a general
field theoretical framework for tunnelling amplitudes [109, 110]. In this field theoretical
language, the problem we are interested in corresponds to, as we shall explain, instantons
linking the topology change of a 𝑑-dimensional bath to protected gapless modes in interfaces
between topologically distinct phases in 𝑑 +1 dimensions.

The question we set to answer is inspired by theoretical [100, 101] and experimental [102,
103] work on planar Josephson junctions, motivating the 𝑑 = 1 example that we shall be
mostly focusing on. In these setups, the fermionic topology changes as a function of
the superconducting phase difference 𝜙 across the junction [100, 101], resulting in two
topologically inequivalent minima of the effective Josephson potential. The concept we
investigate is however more general and can arise in other settings where the control parameter
for whether a fermionic system is in a topological phase can be promoted into a quantum
variable.

In the language of planar Josephson junctions, the new ingredient we add is charging energy,
a contribution to the Hamiltonian to be considered, e.g., in Cooper pair box systems [173]
that we reviewed in Sec. 1.2.1. Charging energy serves as a kinetic term for 𝜙, hence it is its
presence that enables 𝜙 to quantum tunnel between the minima of the effective Josephson
potential it experiences.

Our main finding is that the topology-enforced gap closing reduces the tunnelling
amplitude exponentially in the size of the bath (which for our planar-junction inspired model
is also the system size). We derive, and quantify, this result using instantons, a method
which we employ both analytically in illuminating limits, and in variational numerics in
more general cases. We find that our variational approach, although focused on a certain
instanton ansatz, performs excellently, as confirmed by comparisons with the ground state
energy splitting obtained by exact diagonalisation.
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The rest of the Chapter is organised as follows: After introducing our 𝑑 = 1 model in
Sec. 3.2, we describe the field theory for the general problem in Sec. 3.3. We then link
instantons coupled to 𝑑-dimensional fermions to topological boundary modes of systems
in 𝑑 + 1 dimensions in Sec. 3.4, a section which also includes a detailed analytical study
of our 𝑑 = 1 model, focusing on the “sharp-instanton limit” to illuminate key topological
features. We describe our variational approach in Sec. 3.5 and compare our instanton-based
results with exact diagonalisation in Sec. 3.5.4. We summarise our results and discuss some
implications and generalisations in Sec. 3.6.

3.2 Model

Our model is inspired by proposals that implement a nontrivial topological superconductor
in planar Josephson junctions [101, 100]. In these quasi-one-dimensional systems at the
interface between two superconductors, the phase difference 𝜙 between the superconductors
drives a transition between topologically trivial and nontrivial regimes, with the latter hosting
zero-energy Majorana end modes. Importantly, the ground state energy forms a potential
landscape with two topologically inequivalent minima [100]. This behaviour is captured by
the effective Hamiltonian

H𝜙 (𝑘) = Δcos2
(
𝜙

2

)
𝜎3−Δsin2

(
𝜙

2

)
[cos(𝑘)𝜎3 + sin(𝑘)𝜎2] , (3.1)

which is topologically trivial around 𝜙 = 0 and nontrivial [25] around 𝜙 = 𝜋, with transitions
occurring at 𝜙 = 𝜋/2,3𝜋/2. It interpolates between the two dimerised limits of the Kitaev
chain at 𝜙 = 0 and 𝜙 = 𝜋, where Majoranas are coupled either only on the same site or only
between neighbouring sites, respectively [25]. The Pauli matrices 𝜎𝜇 act in particle-hole
(PH) space and H𝜙 respects both PH (with Ξ = 𝜎1K, where K is complex conjugation)
and time-reversal symmetry (with 𝑇 = K). The first term proportional to cos2(𝜙/2) is a
chemical potential, whose value we chose to match the superconducting order parameter Δ.
The single-particle energies 𝜀±𝜙 (𝑘) = ±Δ

√︃
1− sin2 (𝜙) cos2(𝑘/2) equal ±Δ at both 𝜙 = 0 and

𝜙 = 𝜋.
We show the single-particle and ground state energies 𝑉𝜙 = 1

2
∑
𝑘 𝜀
−
𝜙 (𝑘) for different

boundary conditions in Fig. 3.1. For periodic boundary conditions (PBC), the ground state
parity changes a function of 𝜙, whereas for antiperiodic boundary conditions (APBC) the
ground state remains in the same parity sector. With open boundary conditions (OBC),
Majorana zero modes form at the ends of the chain in the topological phase such that the
ground state becomes approximately degenerate (with exponentially small splitting that
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Fig. 3.1 (a)–(c) Single-particle energies of the fermionic Hamiltonian (3.1) for 𝐿 = 20 sites.
(a) For periodic boundary conditions, the single-particle gap closes, while (b) for anti-periodic
boundary conditions, a gap of order 1/𝐿 remains; (c) for open boundaries, Majorana zero
mode end states exist in the topological regime for 𝜋/2 < 𝜙 < 3𝜋/2; their energy splitting
vanishes exactly for 𝜙 = 𝜋. (d)–(f) Energies of the ground state and the first excited state,
with the colour denoting even (black, 𝑝 = +1) and odd (red, 𝑝 = −1) fermion parity. (d) For
periodic boundary conditions, the ground state parity is different in trivial and nontrivial
sectors, while (e) the ground state parity is the same for anti-periodic boundaries; (f) for open
boundaries, even and odd parities are nearly degenerate in the topological regime and exactly
degenerate at 𝜙 = 𝜋. When investigating tunnelling with open boundaries, we will consider a
variant of this model where the ground state minima have equal depth, unlike in (f).

disappears at 𝜙 = 𝜋) [25]. While OBC are conceptually closest to existing experimental planar
Josephson junction setups [102, 103], our model (3.1) can serve as a prototypical example
for tunnelling between topologically distinct phases also for the other boundary conditions.

A key ingredient to our considerations is a kinetic term for 𝜙, motivated by the charging
energy in superconducting islands [160]. Including this, the full Hamiltonian governing the
fermionic 𝑐𝑘 modes and the bosonic phase mode 𝜙 reads

�̂� = 𝐸C(�̂� −𝑁𝑔)2 + 1
2

∑︁
𝑘

𝜉†𝑘H𝜙 (𝑘)𝜉𝑘 (3.2)

with the Nambu spinors 𝜉𝑘 = (𝑐𝑘 , 𝑐†−𝑘 ), the charging energy 𝐸C, and the bias charge 𝑁𝑔 (in a
superconductor this arises due to a gate voltage). The bosonic number operator �̂� and the
phase mode 𝜙 are conjugate variables that satisfy [𝜙, �̂�] = 2𝑖 for reasons we motivated in
Sec. 1.2.1.



3.3 Tunnelling and Instantons 79

As is often the case when coupling a particle to a bath, 𝜙 interacts with every fermion
mode [153–157]; for our system this makes the coupling nonlocal. The system can be made
local by including spatial fluctuations 𝜕𝑥𝜙; in a superconducting system, neglecting these
is justified provided that the length of the system is smaller than the Josephson penetration
depth 𝜆J [174, 107] and the characteristic length 𝐿𝐻 [175, 176] induced by a perpendicular
magnetic field component [177].

Naïvely, we could replace the fermionic Hamiltonian (3.1) by its ground state energy; this
corresponds to the particle tunnelling in the potential 𝑉𝜙. The resulting dynamics would be
essentially described by a 0− 𝜋 Cooper pair box [178, 179]. Alluding to the superconductor
analogy, we refer to energy scale characterizing 𝑉𝜙 as the Josephson energy, which for
concreteness we define as 𝐸J ≡ (𝑉𝜋/2−𝑉0)/2. The scenario we outlined in the Introduction
is one where the fermionic bath is gapped at the potential minima. This implies 𝜔0 ≪ Δ

where 𝜔0 ∝
√
𝐸C𝐸J is the Josephson plasma frequency: the characteristic energy scale for

the oscillations of the particle in the potential minima. We shall be interested in the regime
where the tunnelling between these minima can be read off from the splitting between the
energies of the particle’s ground and first excited states. We thus require this splitting to be
much smaller than the level spacing 𝜔0 characterizing each minima. In terms of the naïve
potential tunnelling picture, this corresponds to 𝐸J/𝐸C ≫ 1.

3.3 Tunnelling and Instantons

Our goal is to estimate the influence of the fermions’ topology change on the amplitude for
tunnelling between 𝑉𝜙’s adjacent minima. Owing to the fermions being gapped near 𝑉𝜙’s
minima, the particle simply experiences potential 𝑉𝜙 near the corresponding values of 𝜙.
However, since the tunnelling path involves a topology-changing gap closing, the picture of a
particle tunnelling in potential 𝑉𝜙 is qualitatively incomplete.

To calculate the fermionic correction to the amplitude, one may consider taking a
boson×fermion factorised wave function ansatz near the potential minima and applying
a generalisation of linear combination of atomic orbitals (LCAO) [180] to this ansatz.
While the exponential decaying overlap of the topologically distinct fermionic ground states
already suggests a correction factor suppressing tunnelling exponentially with the fermionic
system size, LCAO is known to inaccurately capture tunnelling exponents even in simple
cases [181, 182]. Hence, one might worry that elevating LCAO to our more intricate scenario
might miss key features. We therefore use a field theoretical approach instead that can
incorporate bosonic and fermionic features on the same footing. In such field theories,
tunnelling problems can be addressed via instantons [109], which will also be our method.
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This is a semiclassical approach and hence requires working in the small tunnel splitting
regime we are interested in.1

3.3.1 Path Integral

Our starting point is the partition function corresponding to the Hamiltonian (3.2). It can be
written as a path integral over fields defined on an interval of imaginary time 𝜏 ∈ [0, 𝛽):

𝑍 =
∫
D𝜙D𝒄D �̄� 𝑒−𝑆, (3.3)

where 𝒄, �̄� are Grassmann variables satisfying anti-periodic temporal boundary conditions.
The action 𝑆 = 𝑆𝜙 + 𝑆f is composed of a bosonic part

𝑆𝜙 =
∫ 𝛽

0
𝑑𝜏

[
1
2

1
8𝐸C
(𝜕𝜏𝜙𝜏)2 + 𝑖

𝑁𝑔

2
(𝜕𝜏𝜙𝜏)

]
(3.4)

and a fermionic part [114]

𝑆f =
1
2

∫ 𝛽

0
𝑑𝜏 Ψ̄𝑇 (𝜕𝜏 +H𝜙𝜏 )Ψ, (3.5)

where Ψ = (𝒄, �̄�) is the Nambu spinor andH𝜙 is the fermionic Bogoliubov-de-Gennes (BdG)
Hamiltonian (3.1). The phase 𝜙𝜏 appearing in the path integral is no longer compact and
instead takes on any real value, subject to quasiperiodic boundary conditions 𝜙𝛽 = 𝜙0 +2𝜋𝑤
which allow for nontrivial windings 𝑤 ∈ ℤ. The 𝛽→∞ limit of 𝑍 will give us information
about the ground state of the system.

3.3.2 The Instanton Gas

To gain intuition into the tunnelling problem and a baseline to quantify the effect of the
topology-changing fermions, we now consider a simpler problem, where we replace the
fermionic Hamiltonian in Eq. (3.1) by its ground state energy 𝑉𝜙, a double-well potential
with minima 𝑉0 = 𝑉𝜋 at 𝜙 = 0 and 𝜙 = 𝜋, respectively. (This is exemplified by APBC in
Fig. 3.1(e) and can also be achieved for PBC and OBC by a suitable symmetrisation to be
described below.) The resulting action 𝑆n = 𝑆𝜙 +𝑈n is similar to Eq. (3.3), but since fermions

1The semiclassical nature of the small splitting regime can be seen from the tunnelling exponent
ℏ−1

∫ √︁
2𝑚 [𝑉 (𝑥) −𝐸)]𝑑𝑥 for a particle of mass 𝑚 and energy 𝐸 in a potential 𝑉 .
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are absent, the fermionic action 𝑆f has been replaced with what we dub the ‘naïve potential’

𝑈n [𝜙𝜏] =
∫ 𝛽

0
𝑑𝜏𝑉𝜙𝜏 . (3.6)

The naïve calculation closely follows that of Sec. 1.3.2, whose main results we now briefly
recapitulate. The dominant contributions to this path integral come from 𝜙𝜏 configurations
that minimise 𝑆n, the most significant being 𝜙𝜏 = 0 and 𝜙𝜏 = 𝜋, which stay at a minimum
of the potential throughout. The action also has other subsidiary minima that contribute
to 𝑍 at next-leading order, arising from extremal configurations of 𝜙𝜏 which solve 𝛿𝑆n = 0.
Looking at the Euler-Lagrange equations resulting from 𝑆n, the dynamics of 𝜙 (thought of as
a position coordinate) are equivalent to a classical particle moving in a potential landscape
−𝑉𝜙 [114]. Thus in addition to staying at the top of the potential, the particle can move down
from one extremum and up to another, where it can spend an arbitrary amount of time before
returning, if the minima of 𝑉𝜙 are symmetric. The 𝜙𝜏 solutions that connect the minima are
called instantons (or anti-instantons when moving in the opposite direction) [109]. Their
name refers to them being well-localised in (imaginary) time: their width (i.e., the time spent
between the potential extrema) is of the order 1/𝜔0, the harmonic oscillator frequency of the
two wells, assumed to be the same. Each classical instanton has action 𝑆★n , and these can
be chained together to form approximate solutions of the classical equations of motion. To
capture the effect of tunnelling on the low-energy spectrum, we sum over all such solutions in
the instanton gas summation [109].

Following Coleman’s calculation [109], the symmetry of the minima 𝑉0 = 𝑉𝜋 allows 𝑞
instantons and 𝑞 anti-instantons to appear at any time and in any order (provided one starts
and ends in a minimum of the same type). Summing over all winding numbers 𝑤 ∈ ℤ, the
leading terms in the partition function are given by

𝑍 ∝ 𝑒−𝛽(𝑉0+ 𝜔0
2 )

∑︁
𝑤

∞∑︁
𝑞,𝑞=0

𝛿𝑤, 𝑞−�̄�2

(
𝛽𝐾𝑒−𝑆

★
n

)𝑞+𝑞
𝑒−𝑖

𝜋
2 𝑁𝑔 (𝑞−𝑞)

𝑞!𝑞!
. (3.7)

𝐾 is a fluctuation factor associated with each instanton, whose value shall not concern us.
Splitting up the

∑
𝑞/𝑞 summations into even and odd contributions, we see that the partition

function is given by

𝑍 ∝ 𝑒−𝛽(𝑉0+ 𝜔0
2 ) cosh

[
2𝛽𝐾𝑒−𝑆

★
n cos

(𝜋
2
𝑁𝑔

)]
. (3.8)
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By comparing this to the form 𝑍 = Tr
{[∑

𝑛 𝑒
−𝛽𝐸𝑛 |𝑛⟩ ⟨𝑛|]}, we deduce that the low-energy

spectrum is given by

𝐸±(𝑁𝑔) =𝑉0 + 𝜔0
2
±2𝐾𝑒−𝑆

★
n cos

(𝜋
2
𝑁𝑔

)
, (3.9)

which is the familiar tight-binding dispersion with tunnelling amplitude 𝑡0→𝜋 = 2𝐾𝑒−𝑆★n
between states at 𝜙 = 2𝑚𝜋 and 𝜙 = (2𝑚 +1)𝜋 that otherwise have equal energy. The action
appearing in the exponent consists of equal kinetic and potential energy parts and is given by

𝑆★n =
1

2
√
𝐸C

∫ 𝜋

0
𝑑𝜙

√︁
𝑉𝜙 −𝑉0, (3.10)

which is the source of the exponential suppression of charge noise with 𝐸J/𝐸C in trans-
mons [108, 183].

A key assumption behind the instanton gas summation is that the gas is dilute [109]. The
instanton density is ∝ exp

(−𝑆★n ) [109], hence the diluteness assumption amounts to requiring
small tunnel splitting, placing us in the regime we are interested in.

Note that to be able to read out the 0→ 𝜋 tunnelling amplitude from the spectrum,
we required the minima to be equal. Had this not been the case, supposing instead that
𝑉0 <𝑉𝜋, the classical solutions would more closely resemble a sequence of 0→ 2𝜋 instantons
separated by large imaginary time durations, rather than 0→ 𝜋 instantons [116]. In this limit
we would get a ground state energy that disperses as cos

(
𝜋𝑁𝑔

)
, i.e., with halved 𝑁𝑔 periodicity,

corresponding to the 2𝜋-periodicity of the potential encoding Cooper pair tunnelling (instead
of the electron quartet tunnelling encoded by 𝜋 periodicity [178, 179]). We mention this
because the ground state energy of the double-well Kitaev model, as written in Eq. (3.1), is
symmetric only for APBC, as seen from Fig. 3.1. With PBC, although the minima have equal
energies, their ground state parities are different due to the gap closing, and hence the minima
are completely decoupled for fixed parity. OBC has an asymmetric ground state profile even
without fixing parity because the gapped bulk modes are replaced by zero-energy Majorana
end modes in the topological phase, which do not contribute to the ground state energy. For
PBC and OBC, we therefore have to consider variants of the model with symmetric minima,
in order for the magnitude of the 0→ 𝜋 tunnelling to be visible in the low-energy spectrum.
Due to its closer link to our inspiring topological superconducting systems [100–103] and
features that Majorana end modes may present, of these two cases we mainly focus on OBC,
while we include APBC for its relative technical simplicity.
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3.3.3 Integrating Out Fermions

Our goal is to capture the modification of 𝑡0→𝜋 due to the topology-changing fermions. To
compute this, we now return to the full many-body path integral in Eq. (3.3). The fermionic
Lagrangian is bilinear in the fermionic fields and so we can perform a Gaussian integral to
obtain [184] ∫

D𝒄D �̄� 𝑒−𝑆f = Pf
[
𝜕𝜏 +H𝑀

𝜙𝜏

]
, (3.11)

where H𝑀
𝜙 = −[H𝑀

𝜙 ]𝑇 =𝑊H𝜙𝑊
† is the Hamiltonian written in the Majorana basis with

𝑊 = 1√
2

( 1 1−𝑖 𝑖
)
. Thus by integrating out the fermions we have obtained a partition function

expressed as a path integral of the phase only

𝑍 =
∫
D𝜙𝑒−𝑆𝜙 Pf [𝜕𝜏 +H𝑀

𝜙𝜏
]/ Pf [𝜕𝜏 +H𝑀

0i ], (3.12)

albeit one with a complicated (temporally nonlocal) action. Because of the continuous 𝜕𝜏 term,
the Pfaffian needs to be regularised and so we divide by the Pfaffian for the static phase profile
𝜙𝜏 = 0 ≡ 𝜙0i without instantons.2 The suppression of tunnelling due to topology-changing
fermions originates in the deviation of this Pfaffian ratio from the naïve potential, a point
we will further elucidate in Sec. 3.5.1 (where we will also find that our regularisation is
analogous to an offset sending 𝑉0→ 0).

Since we are interested only in the magnitude of this fermionic suppression, it will be
simpler work with the determinant. In terms of this,√︃

det
[
𝜕𝜏 +H𝜙𝜏

]
= Pf [𝜕𝜏 +H𝑀

𝜙𝜏
] (3.13)

up to a sign that plays no role in our considerations3. This fermionic factor defines what we
refer to as the ‘fermionic potential’

𝑈f [𝜙𝜏] ≡ −1
2

logdet
[
𝜕𝜏 +H𝜙𝜏

]
, (3.14)

although as it stands only𝑈f [𝜙𝜏] −𝑈f [𝜙0𝑖] corresponding to the Pfaffian ratio is well defined.
Unless stated otherwise (cf. Sec. 3.5.1), henceforth we consider this difference and compare
with the naïve case with a similarly subtracted naïve potential (this subtraction is just an
inconsequential energy offset in the naïve case). Crucially, the relevant phase profiles 𝜙𝜏

2We choose subscript 0i to represent zero instantons and use it with both phase profiles and Hamiltonians.
3For the chirally symmetric system we consider, we always have a real quantity

det
[
𝜕𝜏 +H𝜙𝜏

] /
det[𝜕𝜏 +H0i] > 0 for all 𝜙𝜏 , so the sign of the corresponding Pfaffian never changes.
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contributing to the path integral still resemble those of the instanton gas, so our partition
function can be expanded in the same way as Eq. (3.7) but with modified action.

3.4 Tunnelling Suppression via Topology in 𝑑+1 Dimensions

We next explain how the instantons connecting minima whereH𝜙𝜏 has distinct topology can
be linked to topologically protected 𝑑-dimensional gapless boundary modes in a topological
Hamiltonian in 𝑑 + 1 dimensions. At the core of this correspondence is imaginary time
supplying an extra dimension that, in a manner akin to reversing dimensional reduction [17,
18, 127, 169], allows one to climb a step higher in a dimensional hierarchy.

By Eq. (3.13), we require the product of all eigenvalues of the (non-Hermitian) kernel
L(𝜏) = 𝜕𝜏 +H𝜙𝜏 . WhenH𝜙𝜏 enjoys a chiral symmetry,

{
Γ,H𝜙

}
= 0 with Γ a gamma matrix

(i.e., a Pauli matrix or its Hermitian higher-dimensional generalisation [185]), then H̃ (𝜏) =
𝑖ΓL(𝜏) is a Hermitian operator. [Note that detH̃ (𝜏) = detL(𝜏) since det 𝑖Γ = 1.] If chiral
symmetry is absent, it can be introduced by doubling, i.e., considering L′(𝜏) = 𝜕𝜏 +H𝜙𝜏 ⊗𝜎𝑎
with Pauli matrix 𝜎𝑎 (and taking another square root of the corresponding determinant to
recover the Pfaffian, as done in the 𝑑 = 0 example of Ref. [168]). Now H̃ (𝜏) = 𝑖ΓL′(𝜏), with
Γ = 𝟙⊗𝜎𝑏 (𝑏 ≠ 𝑎), which is again Hermitian. The operator H̃ (𝜏) can be interpreted as a
Hamiltonian in 𝑑 +1 dimensions. The steps leading to H̃ (𝜏), including the doubling in the
non-chiral case, parallel closely (the reversal of) features in dimensional reduction procedures
for topological insulators and superconductors [18].

Topologically protected gapless interface states at instanton locations are guaranteed to
arise because, at low energies, the topological transition (with 𝜙𝜏) ofH𝜙𝜏 reduces to a mass
inversion of a 𝑑-dimensional Dirac Hamiltonian which, in turn, becomes a 𝜏-dependent mass
kink for H̃ (𝜏) in 𝑑 +1 dimensions. Such mass kinks, by a generalisation of the Jackiw-Rebbi
mechanism [31], bind 𝑑-dimensional topologically protected gapless modes, a key feature
underlying topological insulators’ and superconductors’ robust boundary modes [186, 17, 18].

For our toy model Eq. (3.1), {𝜎1,H𝜙} = 0 and thus

H̃ (𝜏) = 𝑖𝜎1L(𝜏) =Δ2 cos𝜙𝜏 [(1+ cos 𝑘)𝜎2− sin 𝑘𝜎3]

+ Δ
2
[(1− cos 𝑘)𝜎2 + sin 𝑘𝜎3] + 𝑖𝜕𝜏𝜎1 (3.15)

is Hermitian. It is a 𝑑 = 2 class D superconductor Hamiltonian. Each instanton, i.e., a phase
slip of 𝜙 by 𝜋, corresponds to a topological transition of H̃ (𝜏); the corresponding interface
states are shown schematically in Figs. 3.2 and 3.3.
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3.4.1 Sharp Instanton Limit

While the shape of 𝜙𝜏 and the fermionic spectrum are interdependent and hence solving for
them is a nontrivial problem, certain limiting cases for 𝜙𝜏 allow for tractable examples that
illuminate generic topological features dictating the behaviour of the Pfaffian ratio. We next
focus on such a case, specifically on the “sharp instanton limit” of instantons with vanishingly
short width. Although, since the instanton width is set by 1/𝜔0, such sharp instantons are
beyond the 𝜔0 ≪ Δ regime, they are not only analytically tractable, but (as we shall justify in
Sec. 3.5.2) they also correspond to the biggest discrepancy between the fermionic and naïve
potentials, and hence will allow us to bound the fermionic suppression of 𝑡0→𝜋.

A key simplification of the sharp instanton limit is that for such instantons there is no
time spent away from the minima to accumulate potential contributions to the naïve action
and so 𝑈n [𝜙2𝑚i] =𝑈n [𝜙0i] for a profile 𝜙2𝑚i with 2𝑚 sharp instantons. For the fermionic
potential, however, we will show that𝑈f [𝜙2𝑚i] ≫𝑈f [𝜙0i]. Evaluating the Pfaffian ratio for a
profile 𝜙2𝑚i amounts to comparing the energies of H̃2𝑚i(𝜏) with those of a static Hamiltonian
H̃0i(𝜏), where H̃𝑛i(𝜏) is H̃ (𝜏) on the background of 𝑛 sharp instantons. Since the spectrum
of H̃ (𝜏) is qualitatively different for OBC versus APBC, we discuss each case separately.

APBC

Antiperiodic boundary conditions are the simplest to deal with: Translational invariance
means we can stay in momentum space along the spatial direction. Each instanton changes the
sign of cos𝜙𝜏 and corresponds to a topological transition of H̃ (𝑘, 𝜏) that binds low-energy
chiral modes with dispersion

𝐸±∥ (𝑘) = ±Δsin (𝑘/2) (3.16)

to the interface (derived in Appendix B.1), where chirality depends on the direction of the
sign change of cos𝜙𝜏. To find the contribution of each instanton to det

{H̃ (𝜏)}, we take
the product of the energies of all sub-gap states sampled by momenta 𝑘𝑛 = (2𝑛 + 1)𝜋/𝐿
consistent with APBC for 𝐿 sites. All these states would otherwise be at the gap energy
Δ, so the determinant ratio for a configuration with 2𝑚 phase transitions is given, up to an
inconsequential sign, by

det
{H̃2𝑚i(𝜏)

}
det

{H̃0i(𝜏)
} =

[
𝐿−1∏
𝑛=0

sin (𝑘𝑛/2)
]2𝑚

=
[
2−(𝐿−1)

]2𝑚
, (3.17)
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Fig. 3.2 A cartoon showing the edge modes of H̃ (𝑘, 𝜏) for an instanton-anti-instanton
configuration (left) with twisted boundary conditions. On the right are the dispersions 𝐸±∥ (𝑘)
of the two edge modes, showing they have different chirality.

since other supra-gap states remain unchanged. The last equality makes use of a trigonometric
identity 4, but one expects an 𝑒−𝛼𝐿 dependence for edge mode dispersions of any shape since
the logarithm of the product can be approximated by an integral in the large 𝐿 limit 5.

When instantons are very close, the exponentially localised edge modes with opposite
chirality can overlap and gap out, but as instantons separate, this small exponential splitting
is quickly dwarfed by 𝐸+∥ (𝜋/𝐿). Thus, the dilute instanton gas approximation [109] remains
valid. (In fact, the approximation is even better justified than in the naïve case since the
instanton density is exponentially suppressed in the instanton action [109] so the gas is further
rarefied in the presence of fermions due to the increased instanton action.)

Generalizing the calculation of Eq. (3.9) to the case with fermions, the tunnel amplitude
is still set by the single-instanton action, which is half of that of the two-instanton case, the
minimal configuration allowed by the 𝜙0 ≡ 𝜙𝛽 temporal boundary conditions imposed by the
partition function. (While 𝜙 ≡ 𝜙+2𝜋 due to charge quantisation, 𝜙 . 𝜙+ 𝜋 notwithstanding
𝑉0 =𝑉𝜋.) Although the naïve potential𝑈n [𝜙2i] −𝑈n [𝜙0i] → 0 vanishes for sharp instantons
𝜙2i (where the subtraction of𝑈n [𝜙0i] follows the naive potential limit of the Pfaffian ratio,
cf. Sec. 3.5.1), the topologically guaranteed chiral modes of H̃2i(𝜏) mean that the fermionic
potential approaches a lower bound 𝑈f [𝜙2i] −𝑈f [𝜙0i] → (𝐿 − 1) log2 upon reducing the
instanton width.

4This is a specific case of the general identity sin (𝐿𝑥) = 2𝐿−1 ∏𝐿−1
𝑘=0 sin (𝑥 + 𝑘𝜋/𝐿) which follows from

writing the 𝐿 roots of unity as 𝑧𝐿 −1 =
∏𝐿−1

𝑘=0 (𝑧− 𝑒−𝑖2𝜋𝑘/𝐿). Dividing by the first term and taking 𝑥→ 0 also
gives 𝐿 = 2𝐿−1 ∏𝐿−1

𝑘=1 sin (𝑘𝜋/𝐿), which can be used for PBC.
5For a positive function 𝑓 (𝑘) we have log

∏𝐿−1
𝑛=0 𝑓 (𝑘𝑛) =

∑𝐿−1
𝑛=0 log 𝑓 (𝑘𝑛) → ([𝐿−1]/2𝜋)

∫ 2𝜋
0 𝑑𝑘 𝑓 (𝑘) for

𝐿 ≫ 1.
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Fig. 3.3 A cartoon showing the edge mode for an instanton-anti-instanton configuration with
OBC, separated by imaginary time 𝑇 . The chiral mode runs along the entire boundary of the
topological region. Shown on the right are the dispersions along different sections of the
perimeter.

This sharp instanton limit is the regime with the strongest suppression of tunnelling
due to fermions (cf. Sec. 3.5.2), and so by modifying the instanton action appearing in the
spectrum (3.9), we can bound by how much the naïve tunnelling amplitude 𝑡(n)

0→𝜋 can be
modified by fermions. For APBC, Eq. (3.17) implies

𝑡(f)
0→𝜋 ≥ 𝑒−

1
2 (𝐿−1) log2 𝑡(n)

0→𝜋 . (3.18)

Thus the tunnelling is exponentially suppressed as a function of system size. Since it derives
entirely from the topological boundary modes of H̃2i(𝜏), this bound on the scaling exponent
is purely due to the topological inequivalence of the two ground states, and is unrelated to the
trivial scaling of 𝑉𝜙 with 𝐿. (Any information about the energy scale Δ was lost when taking
the ratio of energies, but this is unique to the sharp instanton limit since we will later see that
the scale of the potential influences the instanton timescale and hence the fermionic factor.)

OBC

Open boundary conditions are technically more difficult to treat because we cannot work in
momentum space. Recall that the topological limit of the 1D Kitaev chain has zero-energy
Majorana end modes [25]. When adding the 𝑖𝜕𝜏𝜎1 term, these Majorana modes gain a linear
dispersion in the temporal direction, given by

𝐸±∥ (𝜔) = ±𝜔. (3.19)



88 Quantum tunnelling in the presence of a topology-changing fermionic bath

This means that for two instantons separated by imaginary time 𝑇 , instead of having
counterpropagating chiral edge modes in a ribbon geometry as for APBC, these edge modes
run all the way around the perimeter of the 2D (𝑇 × 𝐿)-sized topological region, shown in
Fig. 3.3. The differing dispersions in each direction mean that the frequency 𝜔 and wave
vector 𝑘 on the different sections are related through the energy matching condition

𝐸+∥ (𝜔) = 𝐸+∥ (𝑘). (3.20)

As a fermion traverses this perimeter, it undergoes one whole rotation and must acquire a
phase 𝑒𝑖𝜋, which gives a quantisation condition

2𝑇𝜔+2𝐿𝑘 = (2𝑛+1)𝜋, (3.21)

with 𝑛 ∈ ℤ that can be solved simultaneously with Eq. (3.20) to obtain the quantised energies
of the chiral modes. We then follow the same principle of taking the product of these energies
as a fraction of the gap.

Although the quantisation condition lacks algebraic solutions, we numerically find that
Eq. (3.21) leads to a product [generalizing Eq. (3.17)] that depends exponentially on 𝑇 .
Intuitively, this is a consequence of the asymmetry in the ground state for OBC: Recall
from Fig. 3.1 that for OBC the ground state minima are offset by Δ, which means that the
naïve action would accumulate a contribution

∫
𝑑𝜏𝑉𝜙𝜏 = 𝑇Δ when 𝜙𝜏 spends a duration 𝑇

in the higher well. The result for multiple pairs of instantons follows by summing over all
pair separations 𝜏2 𝑗 − 𝜏2 𝑗−1 which govern the sizes of topological regions. The presence of
𝑒−(𝜏2 𝑗−𝜏2 𝑗−1)Δ terms prevents us from plugging our result into Eq. (3.7) as a modified instanton
action because the integral over instanton locations {𝜏𝑖} (a key step leading to Eq. (3.7), c.f.
Ref. [109]) will be fundamentally different—the instantons are now interacting. However, as
mentioned in Sec 3.3.2, asymmetric wells do not tell us about 0→ 𝜋 tunnelling, so we must
symmetrise the wells. We therefore change the gap on the trivial side to Δ′ = Δ(1−1/𝐿). One
intuitively expects that having thus symmetrised the wells, i.e., removed the

∫
𝑑𝜏𝑉𝜙𝜏 = 𝑇Δ

contribution, we have eliminated the instanton interactions, which allows us to interpret what
remains as a modified instanton action. This will indeed turn out to be the case, however it
requires more careful justification: by symmetrizing the wells we introduced a gap asymmetry
and this requires us to consider more than just the chiral edge modes (which themselves are
also modified).

The first modification is that when changing Δ→ Δ′ in the trivial phase, the dispersion of
the chiral modes along 𝑥 is replaced by 𝐸′±∥ (𝑘), as we detail in Appendix B.1, which changes
the energy matching equation (3.20). Letting 𝑘★𝑛 denote the quantised momenta of states
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running around the edge of length 2𝑇 +2𝐿, we numerically find that

∏
𝑛

𝐸′+∥ (𝑘★𝑛 )
Δ′

≈ exp{[−2(𝐿−1) log2−4𝑇Δ′/𝜋]}. (3.22)

For OBC, energies above the gap are also modified by the existence of a topological
region. There are two kinds of supra-gap states that are modified. The first kind is the set of
states that are localised at the ends of the chain, but propagate along the temporal direction.
In the trivial gapped region, these end states have dispersion

𝐸±Δ′ (�̃�) = ±
√︁
�̃�2 +Δ′2 (3.23)

that must match the energy 𝐸±∥ (𝜔) in the topological region. This time, the quantisation
condition comes from the APBC for fermions in the path integral:

(𝛽−𝑇)�̃�+𝑇𝜔 = (2𝑛+1)𝜋. (3.24)

The supra-gap energies in the absence of any instantons are recovered by setting 𝑇 = 0 in the
above equation. Denoting the quantised frequencies by �̃�★𝑛 and counting both positive and
negative energies, as 𝛽→∞ the relevant ratio tends to[∏

𝑛

𝐸+Δ′ (�̃�★𝑛 )√︁
(2𝑛+1)2𝜋2/𝛽2 +Δ′2

]2

= exp{[−2𝑇Δ′(1−2/𝜋)]}. (3.25)

The other kind of supra-gap states describes those in the bulk of the superconducting chain,
whose energies are affected by the presence of instantons only because we have Δ′ ≠ Δ,
but not for topological reasons. Since Δ > Δ′, these energies increase when more time is
spent in the topological phase and their combined effect will be to cancel the exponential
decay with instanton separation that we have seen in Eqs. (3.22) and (3.25). The most
significant contribution comes from states above the larger gap Δ. These are solved through
a quantisation condition similar to Eq. (3.24), but this time one must match 𝐸±Δ′ (�̃�) with
𝐸±Δ (𝜔) = ±

√
𝜔2 +Δ2. Each of these states are (𝐿 − 1)-fold degenerate because each can

be localised on any of the 2𝐿 − 2 Majoranas not on the ends of the chain. There are also
bulk states with energies between Δ′ and Δ, whose increasing energies with 𝑇 make up the
remaining contribution. Since these states do not fully penetrate the topological region,
their energies are approximately as though their frequencies �̃� were quantised through being
antiperiodic over a shorter system of length (𝛽−𝑇). Taking into account both types of bulk
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states, in the same 𝛽→∞ limit, we now have[∏
𝑛

𝐸+Δ(𝜔★𝑛 )√︁
(2𝑛+1)2𝜋2/𝛽2 +Δ′2

]2(𝐿−1)
= exp[2𝑇Δ′] . (3.26)

Combining all these contributions, the determinant ratio for two sharp instantons separated
by 𝑇 is

detH̃2i(𝜏)
detH̃0i(𝜏)

≈ exp[−2(𝐿−1) log2] . (3.27)

Thus, after symmetrisation, one finds the same bound on the suppression due to fermions for
OBC as in Eq. (3.18) for APBC.

3.5 Tunnelling Suppression from a Variational Approach

Although the argument based on topological edge modes quickly gave us an upper bound on
the suppression due to fermions, it cannot easily be extended to give full quantitative results.
The problem is that typical instantons in the gas are not perfectly sharp, and instead have a
finite timescale. Despite the spectrum of the topological edge modes being independent of
instanton shape, a finite instanton timescale leads to other nontopological bound states at the
phase transition whose energies do depend on instanton shape [187]. Analytic results for the
full spectrum of a generic phase profile do not exist, and an approximate spectrum would not
suffice because estimating the tunnelling suppression relies on the precise difference between
the fermionic determinant and its naïve equivalent.

3.5.1 Fermionic Factor as a Generalisation of the Ground State Potential

We now describe an exact approach to calculating the fermionic potential. This approach
works directly with the kernel underlying the Pfaffian, without requiring converting to a
Hermitian matrix and hence chiral symmetry. It will also give an interpretation of the
fermionic determinant by linking it to the one-dimensional potential generated by the ground
state of the BdG system.

We start by writing
det

[
𝜕𝜏 +H𝜙𝜏

]
=

∏
𝑛𝑚

𝜆𝑛𝑚, (3.28)

where 𝜆𝑛𝑚 are the eigenvalues of the differential equation[
𝜕𝜏 +H𝜙𝜏

]
𝜓𝑛𝑚 (𝜏) = 𝜆𝑛𝑚𝜓𝑛𝑚 (𝜏), (3.29)
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which has eigenfunctions of the form

𝜓𝑛𝑚 (𝜏) = T exp
[∫ 𝜏

0
𝑑𝜏′

(
𝜆𝑛𝑚 −H𝜙𝜏′

) ]
𝜓𝑛𝑚 (0). (3.30)

Time-ordering (with later times appearing on the left) is required because the BdG Hamiltonian
does not generally commute at different times,

[H𝜙𝜏 ,H𝜙𝜏′
]
≠ 0. Temporal APBC for fermions

𝜓𝑛𝑚 (𝛽) = −𝜓𝑛𝑚 (0) fixes the eigenvalues to be

𝜆𝑛𝑚 = 𝑖𝜔𝑛 + 1
𝛽

log
{
T exp

[
−
∫ 𝛽

0
𝑑𝜏H𝜙𝜏

]}
𝑚

(3.31)

≡ 𝑖𝜔𝑛− {Heff [𝜙𝜏]}𝑚 , (3.32)

where 𝜔𝑛 = (2𝑛+1)𝜋/𝛽 with 𝑛 ∈ ℤ are the Matsubara frequencies and {•}𝑚 denotes the 𝑚th
eigenvalue of an operator we denote as the effective HamiltonianHeff [𝜙𝜏] (emphasizing that
it depends on the entire 𝜙𝜏 profile). The spectrum ofHeff [𝜙𝜏] inherits PH symmetry.

When taking the product of these eigenvalues, we may use the Weierstrass factorisation
theorem to rewrite the determinant as [188]

det
[
𝜕𝜏 +H𝜙𝜏

]
=

∏
𝑚

(∏
𝑛

𝑖𝜔𝑛

)
cosh

[
𝛽

2
{Heff [𝜙𝜏]}𝑚

]
. (3.33)

Upon taking the ratio, the normalisation-dependent prefactor drops out to give

det
[
𝜕𝜏 +H𝜙𝜏

]
det[𝜕𝜏 +H0i] =

∏
𝑚

cosh [(𝛽/2) {Heff [𝜙𝜏]}𝑚]
cosh [(𝛽/2) {Heff [𝜙0i]}𝑚]

, (3.34)

whose numerator is the partition function for a BdG HamiltonianHeff [𝜙𝜏].
To make the link to the naïve potential, consider a case where H𝜙𝜏 commutes at all

times, such that Heff [𝜙𝜏] = 1
𝛽

∫ 𝛽

0 𝑑𝜏H𝜙𝜏 and hence {Heff [𝜙𝜏]}𝑚 = 𝐼𝑚 [𝜙𝜏] = 1
𝛽

∫ 𝛽

0 𝑑𝜏𝜀𝜙𝜏 ,𝑚

with 𝜀𝜙𝜏 ,𝑚 the instantaneous single particle energies ofH𝜙𝜏 (taken to evolve continuously
with 𝜙𝜏 through any level crossing). In the sense of 𝐼𝑚 [𝜙𝜏], both the APBC and OBC systems
are gapped provided 𝜙𝜏 spends significant time near 𝜙 = 0. Therefore, when ignoring the
evolution of eigenstates with superconducting phase, the fermionic factor tends (upon taking
𝛽 much larger than the inverse of the 𝐼𝑚 gap) to the action of a potential that is the ground
state energy. By the same logic, by noting 𝐼𝑚 [𝜙0i] = 𝜀𝜙=0,𝑚, the denominator in Eq. (3.34)
can be seen to subtract 𝜀𝜙=0,𝑚 from each 𝜀𝜙𝜏 ,𝑚, thus supplying an offset setting the minimum
value of this potential to zero.
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When the eigenstates of the BdG Hamiltonian evolve as a function of phase, Eq. (3.34)
is viewed as the generalisation of the ground state potential action and the spectrum of the
time-ordered quantity Heff [𝜙𝜏] must be evaluated properly. The importance of eigenstate
evolution is also clear if we diagonalise the BdG Hamiltonian in the path integral from the
outset asH𝜙 = 𝑋𝜙 [⊕𝑚𝜀+𝜙,𝑚𝜎3]𝑋†𝜙. Then, the fermionic determinant is replaced by6

det
[
𝜕𝜏 +H𝜙𝜏

] → det
[
𝜕𝜏 +⊕𝑚𝜀+𝜙𝜏 ,𝑚𝜎3 + 𝑋†𝜙𝜏𝜕𝜏𝑋𝜙𝜏

]
, (3.35)

where we see the last term, i.e., the eigenstate evolution, being responsible for the deviation
from {Heff [𝜙𝜏]}𝑚 = 𝐼𝑚 [𝜙𝜏], i.e., from the naïve case. In Appendix B.2, we show that
including eigenstate evolution always increases the naïve action.

These considerations, in particular the cancellation in Eq. (3.34), also show how one can
define an unsubtracted variant of the fermionic potential: the functional

�̃�f [𝜙𝜏] = −1
2

∑︁
𝑚

logcosh [(𝛽/2) {Heff [𝜙𝜏]}𝑚] (3.36)

satisfies �̃�f [𝜙𝜏] −�̃�f [𝜙0𝑖] =𝑈f [𝜙𝜏] −𝑈f [𝜙0𝑖] hence is a useful candidate for a “standalone”
fermionic potential. Another useful feature is �̃�f [𝜙0𝑖] = 𝑈n [𝜙0𝑖], thus the difference of
subtracted fermionic and naïve potentials is simply �̃�f [𝜙𝜏] −𝑈n [𝜙𝜏]. In what follows, one can
thus envision Eq. (3.36) as a fermionic potential, and view the regularisation in Eq. (3.12) as
providing a constant energy offset via �̃�n [𝜙0𝑖]. In what follows, we refer to �̃�f [𝜙𝜏], together
with this constant offset (to maintain consistency with previous sections) as our fermionic
potential and drop the tilde to ease notations.

3.5.2 Variational Instanton Strategy

The effective bosonic theory has a potential𝑈f [𝜙𝜏] that is nontrivial to evaluate even for a
given profile 𝜙𝜏, and the dependence of the profile itself on 𝑈f [𝜙𝜏] leads to an even more
complex problem. We now outline a strategy to tackle this problem variationally. The crux of
this strategy is to again expand the partition function as an instanton gas, motivated by the link
we made in Sec. 3.5.1 between the fermionic Pfaffian factor and the ground state potential.
The shapes of the classical instantons making up the gas are still the result of competition
between kinetic and potential energy but with the new effective potential𝑈f [𝜙𝜏] their features
may change compared with the naïve case. To facilitate relating to our sharp-instanton
results we use the instanton width as a variational parameter. Specifically, we will allow

6This equivalent form is generally less convenient for numerical calculations for the same reasons that
Wilson loops are often more convenient than Berry phase integrals.
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Fig. 3.4 A typical plot of 𝑈f [𝜙★𝜅𝜏]/𝐿 and 𝑈n [𝜙★𝜅𝜏]/𝐿 against 𝜅. As 𝜅→ 0, the fermionic
potential tends to the naïve one, but as 𝜅→∞ it approaches 1

2 log2+O(1/𝐿). Also plotted is
the kinetic energy 𝑆𝜙 [𝜙★𝜅𝜏]/𝐿. In terms of 𝜅 and 𝜖 =

√
𝐸C𝐸J/Δ (set to 𝜖 = 0.3 above), the kinetic

and naïve potential energies of an individual instanton are 𝑆𝜙 [𝜙★𝜅𝜏] = 𝑆★n 𝜅/(2𝜖) ∝ 𝜅Δ/𝐸C
and 𝑈n [𝜙★𝜅𝜏] = 𝑆★n 𝜖/(2𝜅) ∝ 𝐸J/(𝜅Δ), respectively, where 𝑆★n is the classical action given in
Eq. (3.10). The inset shows how the optimal rescaling factor 𝜅★ tracks its naïve counterpart 𝜖 .

the timescale of instantons to be different to their naïve counterparts 𝜙★𝜏 by considering
scaled instantons 𝜙★𝜅𝜏 where we replace 𝜏→ 𝜅𝜏. Since naïve instantons for different values
of 𝜔0 ∝

√
𝐸C𝐸J are themselves related to each other by rescaling [in the action, 𝐸C𝐸J sets

merely the overall scale of the potential relative to (𝜕𝜏𝜙)2], we can choose to define 𝜙★𝜏 as
the naïve instanton for

√
𝐸C𝐸J = Δ. (As this is just a reference classical configuration, it

need not obey the
√
𝐸C𝐸J ≪ Δ restriction.) By defining 𝜙★𝜏 in this way, and optimizing over

𝜙★𝜅𝜏, the naïve action is minimised for 𝜅 =
√
𝐸C𝐸J/Δ, the rescaling required to get from the

reference instanton to the one with 𝜔0 ∝
√
𝐸C𝐸J. We shall, of course, be optimizing not

the naïve action but the one with𝑈f [𝜙𝜏]. By using 𝜅 as a variational parameter, allowed to
deviate from

√
𝐸C𝐸J/Δ, we will better approximate the new classical action in the presence

of fermions, without comprehensively probing the large space of all possible instanton
shapes. Calculating the quantity𝑈f [𝜙★𝜅𝜏] for a range of 𝜅 and comparing the minimal value
of 𝑆[𝜙★𝜅𝜏] = 𝑆𝜙 [𝜙★𝜅𝜏] +𝑈f [𝜙★𝜅𝜏] (which includes the kinetic energy 𝑆𝜙 [𝜙★𝜅𝜏]) to the minimal
value of 𝑆n [𝜙★𝜅𝜏] will finally give the correction to the tunnelling amplitude. (We also set
𝑁𝑔 = 0 to make 𝑆𝜙 [𝜙★𝜅𝜏] real, knowing that the complex winding term exp

{[−𝑖𝜋𝑁𝑔𝑤]} is
accounted for later.)

From Fig. 3.4, one can observe the key features of𝑈f [𝜙★𝜅𝜏] and𝑈n [𝜙★𝜅𝜏] as a function of 𝜅.
Taking 𝜅→∞ corresponds to the sharp instanton limit, where𝑈n [𝜙★𝜅𝜏] → 0 and𝑈f [𝜙★𝜅𝜏] > 0
was evaluated in Sec. 3.4. (We provide another analytical derivation for this limit, using
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a different method, in Sec. 3.5.3.) As the arguments in Sec. 3.4 suggested, the difference
𝑈f [𝜙★𝜅𝜏] −𝑈n [𝜙★𝜅𝜏] is largest in this limit. The opposite “adiabatic” limit of 𝜅→ 0 is most
easily understood from Eq. (3.35). From 𝑋†𝜙𝜅𝜏𝜕𝜏𝑋𝜙𝜅𝜏 = 𝜅𝑋

†
𝜙𝜏
𝜕𝜏𝑋𝜙𝜏 , we see that for 𝜅→ 0

the last term becomes vanishingly small compared with ⊕𝑚𝜀+𝜙𝜏𝑚𝜎3 as this remains gapped
for APBC and OBC, even if the gap is exponentially small in system size for OBC. (We need
not worry about the gap closing for PBC because the 𝑘 = 0 eigenstate does not evolve with
𝜙.) Therefore, for increasingly slow instantons the fermionic potential tends to the naïve
potential: 𝑈f [𝜙★𝜅𝜏] →𝑈n [𝜙★𝜅𝜏] as 𝜅→ 0.

Fig. 3.4 also shows that the first order condition 𝑑𝑆[𝜙★𝜅𝜏]/𝑑𝜅 = 0 for minimizing the
action yields a similar optimal rescaling factor 𝜅★ whether one uses the fermionic or the
naïve potential. Hence,

√
𝐸C𝐸J/Δ remains a good proxy for 𝜅★ in our

√
𝐸C𝐸J ≪ Δ regime.

Furthermore, since the kinetic term is the same for the fermionic and the naïve case, once
the optimal value 𝜅★ is found, the fermionic suppression will approximately be given by
𝑈f [𝜙★𝜅★𝜏] −𝑈n [𝜙★𝜅★𝜏]. Since both𝑈f [𝜙★𝜅★𝜏] and𝑈n [𝜙★𝜅★𝜏] are∝ 𝐿, topology-changing fermions
suppress tunnelling exponentially in 𝐿.

3.5.3 Evaluating Time-Ordered Exponentials with Scattering Matrices
This translation into scattering matrices was done by Jan Behrends, as was the analytical

result for OBC. I separately implemented the scattering matrices numerically.
We now present a method to numerically calculate𝑈f [𝜙★𝜅𝜏] for intermediate values of 𝜅

and any boundary condition. Recall that to compute the fermionic determinant, we need to
evaluate the eigenvalues 𝜆𝑛𝑚 via the time-ordered exponential [cf. Eq. (3.31)]

M(𝛽,0) ≡ exp (−𝛽Heff [𝜙𝜏]) = T exp
[
−
∫ 𝛽

0
𝑑𝜏H𝜙𝜏

]
. (3.37)

The time-ordered exponential can be evaluated numerically by discretizing the integral into
𝑁 steps

M(𝛽,0) = lim
𝑁→∞

M𝑁M𝑁−1 . . .M1 (3.38)

with M𝑛 = exp
[−(𝛽/𝑁)H𝜙𝜏𝑛

]
and 𝜏𝑛 = 𝛽(𝑛−1/2)/𝑁 . Since M(𝛽,0) has both exponentially

large and small eigenvalues [189], the matrix product (3.38) is numerically unstable.
While the matrix product (3.38) itself does not rely on chiral symmetry, our system

does have this symmetry. This allows us to interpret each M𝑛 as a transfer matrix that
satisfies flux-conservation via 𝜎1M

†
𝑛𝜎1 = M−1

𝑛 , which is ensured by the chiral symmetry of
H𝜙 (𝑘) = −𝜎1H𝜙 (𝑘)𝜎1. This allows us to transform the product of transfer matrices (3.38)
into a composition of scattering matrices, whose contraction is numerically more stable [190].
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The reformulation of the time-ordered exponential as a scattering problem has the
further advantage of simplifying the expressions we are ultimately interested in. For
profiles symmetric around 𝛽/2, i.e., 𝜙𝛽/2−𝜏 = 𝜙𝛽/2+𝜏, corresponding to an instanton-anti-
instanton pair, the transfer matrices M(0, 𝛽/2) and M(𝛽/2, 𝛽) are related via imaginary
time reversal, M(𝛽/2,0) = [M(𝛽, 𝛽/2)]†, which relates their respective scattering matrices
S(𝛽/2,0) = −𝜎2 [S(𝛽, 𝛽/2)]†𝜎2. A straightforward calculation using the polar decomposition
reveals that the transmission eigenvalues of the full scattering matrix are𝑇full,𝑚 =𝑇2

𝑚/(2−𝑇𝑚)2,
where 𝑇𝑚 are the transmission eigenvalues of S(𝛽/2,0). The transmission eigenvalues are
related to 𝑒±𝑥𝑚 , the eigenvalues of M(𝛽,0) with real 𝑥𝑚, via 𝑇full,𝑚 = 1/cosh2 𝑥𝑚 [189]. Since
±𝑥𝑚/𝛽 are the eigenvalues of the effective HamiltonianHeff [𝜙𝜏], the fermionic determinant
is thus proportional to the product of all [cf. Eq. (3.33)]

cosh
(
1
2
𝑥𝑚

)
= cosh

[
1
2

arccosh
(
2−𝑇𝑚
𝑇𝑚

)]
=

1√
𝑇𝑚
, (3.39)

i.e., the fermionic determinant for such symmetric configurations is proportional to 1/det(t),
where t is the transmission matrix for half of the imaginary time evolution, consisting of one
instanton.

Analytic Results for Sharp Instantons with OBC

The scattering matrix formalism also allows us to compute the fermionic determinant
analytically in the sharp-instanton limit, including for OBC, without explicitly referring to
the chiral boundary modes. We first rotate the fermionic Hamiltonian (3.1)H𝜙→H ′𝜙 via
𝜎3→ 𝜎1, giving

H ′𝜙 =
(

𝐴𝜙
𝐴†𝜙

)
, 𝐴𝜙 (𝑘) = Δ[cos2(𝜙/2) − sin2(𝜙/2)𝑒−𝑖𝑘 ] . (3.40)

Using the singular value decomposition 𝐴𝜙 =𝑊𝜙Σ𝜙𝑌
†
𝜙 , each transfer matrix for a 𝛿𝜏 slice

can be brought into its polar form [191, 192], hence each scattering matrix is

S =

(
−𝑌𝜙

𝑊𝜙

) (
− tanh

(
𝛿𝜏Σ𝜙

)
sech

(
𝛿𝜏Σ𝜙

)
sech

(
𝛿𝜏Σ𝜙

)
tanh

(
𝛿𝜏Σ𝜙

) ) (
𝑊†𝜙

−𝑌†𝜙

)
. (3.41)

For a system of size 𝐿 with OBC each sub-block is an 𝐿× 𝐿 matrix. At 𝜙 = 0, we consider
the modified chemical potential Δ→ Δ′ = Δ(1−1/𝐿) to ensure that the ground state energies
match (cf. Sec. 3.4.1). The singular value decomposition at 𝜙 = 0 is trivial (Σ0 = Δ′ with
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𝑊0 = 𝑌0 = 1), and at 𝜙 = 𝜋 yields𝑊𝜋 = −1, Σ𝜋 = Δdiag(0,1, . . .1) and

𝑌†𝜋 =

©«
0 1
1 0

. . .
. . .

1 0

ª®®®®®¬
. (3.42)

The sharp instanton limit of a symmetric instanton-anti-instanton configuration, where
according to Eq. (3.39) one may consider just the instanton, has two scattering matrices:
one for imaginary time interval [0, 𝛽/4) at 𝜙 = 0 and another [𝛽/4, 𝛽/2) at 𝜙 = 𝜋. Their
contraction [190] gives the lower triangular transmission matrix

t =
1

cosh
(
𝛽Δ′
4

)
cosh

(
𝛽Δ
4

)
©«

cosh (𝛽Δ/4)
𝑦 1
𝑦2 𝑦 1

. . .
. . .

. . .

𝑦𝐿−1 . . . 𝑦2 𝑦 1

ª®®®®®®®¬
, (3.43)

with 𝑦 = tanh(𝛽Δ/4) tanh(𝛽Δ′/4). Its product of singular values∏
𝑚

√︁
𝑇𝑚 = | det ttot | = cosh (𝛽Δ/4)

[cosh (𝛽Δ′/4) cosh (𝛽Δ/4)]𝐿
(3.44)

equals the determinant of the transmission matrix.
The product of singular values is proportional to the square root of the fermionic

determinant [Eqs. (3.33) and (3.39)], which gives for the ratio of a two-instanton and
zero-instanton configuration in the sharp-instanton limit√︄

det[𝜕𝜏 +H2i]
det[𝜕𝜏 +H0i] =

[cosh (𝛽Δ′/2)]𝐿
[cosh (𝛽Δ′/4)]𝐿 [cosh (𝛽Δ/4)]𝐿−1 , (3.45)

and, for 𝛽Δ≫ 1, √︄
det[𝜕𝜏 +H2i]
det[𝜕𝜏 +H0i] = 2𝐿−1

[
1+𝑂

(
𝑒−(1− 1

𝐿 ) 𝛽Δ2
)]
. (3.46)

Therefore, when the instanton separation 𝛽/2 is well beyond the width Δ−1 of the instanton-
bound fermionic edge mode in the temporal direction (Δ−1 is the “temporal coherence length”
owing to the temporal velocity equalling unity), the determinant ratio does not depend on
the instanton separation. Note that, as in Sec. 3.4.1, this OBC result relies on the matching
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Fig. 3.5 Scaling of the tunnelling amplitude for OBC (left) and APBC (right) systems of
size 𝐿, plotted on a logarithmic scale for different ratios of 𝐸J/𝐸C. The effective Josephson
energy is defined as 𝐸J = 𝐿Δ(𝜋 − 2)/4𝜋 for simplicity. (a) The tunnelling amplitude
predicted by our instanton-based approach [𝑡 (f)0→𝜋] and by the energy splitting obtained from
exact diagonalisation [𝑡0→𝜋], in contrast to the naïve approach [𝑡 (n)0→𝜋] that takes only the
fermionic ground state energy into account. Although plotted up to 𝐿 = 20, the instanton
calculation can easily estimate the tunnelling suppression for even larger systems, whereas
exact diagonalisation quickly becomes impractical. (b) The ratio of exact and naïve results,
compared with our prediction. We also plot the sharp instanton limit results (dotted line),
which bound the suppression of the tunnelling amplitude.

ground state energies at 𝜙 = 0, 𝜋; for values of Δ′ other than Δ(1−1/𝐿), the ratio generally
grows exponentially with instanton separation. Eq. (3.46) agrees with the result Eq. (3.27)
from the boundary-mode approach.

3.5.4 Results

We now calculate the tunnelling suppression due to the topology-changing fermions obtained
from our variational approach. To test our results, we will compare with the splitting of the
lowest two energies obtained by exact diagonalisation.

As we noted in Secs. 3.2 and 3.3, 𝐸J/𝐸C and
√
𝐸J𝐸C/Δ ∝𝜔0/Δ are two key dimensionless

parameters of the problem. The small tunnelling, i.e., semiclassical, limit is 𝐸J/𝐸C ≫ 1; this
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is also the criterion for instanton methods to be valid (cf. Sec. 3.3.2). Conversely, working in
the regime where the fermionic gap near the potential minima is operative (in the sense of
𝜙’s dynamics) requires

√
𝐸J𝐸C/Δ≪ 1.

Since the scale of the Josephson potential 𝐸J ≈ (𝑉𝜋/2−𝑉0)/2 grows linearly with 𝐿, we
require different scaling of 𝐸C depending on which of the key dimensionless parameters we
keep fixed in our calculations: one needs 𝐸C ∼ 𝐿−1 (a scaling that can naturally arise in planar
Josephson junction systems) to keep 𝜔0/Δ fixed, while 𝐸C ∼ 𝐿 is required for fixing 𝐸J/𝐸C.

To assess the performance of our variational calculation, below we focus on fixing
the parameter 𝐸J/𝐸C characterizing the adequacy of the semiclassical limit. In using this
parameter, we must bear in mind however, that now

√
𝐸J𝐸C ∼ 𝐿 hence we must keep 𝐿 finite

to remain in the 𝜔0 ≪ Δ regime.
In our numerical exact diagonalisation of the full Hamiltonian (3.2), we work in the

charge basis. Terms proportional to cos𝜙 are off-diagonal in this basis, 𝑒𝑖𝜙 =
∑
𝑁 |𝑁 +2⟩ ⟨𝑁 |.

Owing to the ∼ (𝑁 −𝑁𝑔)2 charging term, only a certain number of charge states centred
around 𝑁𝑔 contribute to the ground state, hence the charge basis can be truncated to 𝑁𝑠 states
and the low-energy spectrum will still converge to acceptable accuracy. The naïve bosonic
problem, where we replace the fermionic Hamiltonian by its ground state energy, is also
solved by diagonalizing a Hamiltonian with a truncated basis.

As suggested by the form of the low-energy dispersion 𝐸±(𝑁𝑔) in Eq. (3.9), the desired
tunnelling amplitude is observable from the energy splitting when the wells are symmetric
[diagnosed by the condition 𝐸+(1) = 𝐸−(1)] and is given by

𝑡0→𝜋 = [𝐸+(0) −𝐸−(0)]
/

2. (3.47)

However, even after the symmetrisation procedure in Secs. 3.4.1 and 3.5.3, the curvature of
the two wells is different. To counter this effect, we add another Josephson potential to ensure
that the harmonic-oscillator-like states in both wells would have the same energy were it not
for tunnelling.

In Fig. 3.5(a), we show the tunnelling amplitude 𝑡(f)
0→𝜋 based on the instanton calculation

and, for small systems up to 𝐿 = 14, the tunnelling amplitude 𝑡0→𝜋 from the energy splitting
that we computed by exact diagonalisation. We compare these results with the naïve
tunnelling 𝑡(n)

0→𝜋. While 𝑡(n)
0→𝜋/
√
𝐸J𝐸C quickly approaches an 𝐿-independent value, the

tunnelling amplitude 𝑡0→𝜋 decreases exponentially with 𝐿. The instanton-based result 𝑡(f)
0→𝜋

and the exact 𝑡0→𝜋 almost coincide.
To highlight the suppression by the fermionic contribution, we compare the ratios

𝑡(f)
0→𝜋/𝑡

(n)
0→𝜋 and 𝑡0→𝜋/𝑡

(n)
0→𝜋 in Fig. 3.5(b). The suppression gets weaker with larger 𝐸J/𝐸C and

would eventually approach the naïve result. This can be understood by noting that for fixed
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𝐸J/𝐸C, and due to 𝐸J ∝ 𝐿Δ in our system, we have
√
𝐸J𝐸C/Δ ∝ 𝐿

√︁
𝐸C/𝐸J. Therefore, larger

𝐸J/𝐸C leads to smaller 𝜔0 which implies larger instanton width, and hence smaller optimal
value 𝜅★. The smaller 𝜅★ the more the fermionic and naïve potentials are alike (Fig. 3.4), and,
since the fermionic suppression is due to the difference between these two potentials, the
closer we are to the naïve result. Conversely, for small 𝐸J/𝐸C, the tunnelling suppression
approaches the upper bound derived from the sharp instanton limit. Upon increasing 𝐿, the
𝜔0 ∝ 𝐿 dependence, by narrowing instantons and hence increasing 𝜅★, also pushes 𝑡(f)

0→𝜋/𝑡
(n)
0→𝜋

towards the sharp instanton limit; this leads to a slight downward bend in 𝑡(f)
0→𝜋/𝑡

(n)
0→𝜋 as a

function of 𝐿.
While a fuller estimate would require evaluating the fermionic Pfaffian factor beyond

classical instanton configurations, we see that using just the classical configuration works
remarkably well. One would anticipate more deviation from our prediction in parameter
regimes departing from the semiclassical regime 𝐸J/𝐸C ≫ 1, where fluctuations in the
path integral give a greater contribution to the tunnelling amplitude [114]. For numerically
accessible system sizes, an exponential fit to instanton and exact diagonalisation results
produces the same fermionic suppression scaling exponent (within the standard error of
the fit) for each 𝐸J/𝐸C series, with only a small offset. This agreement persists across a
wide parameter range, but it becomes worse with smaller 𝐸J/𝐸C ratios as is expected upon
gradually departing from the semiclassical regime. While, to maintain

√
𝐸J𝐸C ≲ Δ (with√

𝐸J𝐸C ≈ 0.57Δ for 𝐸J/𝐸C = 10 and 𝐿 = 20), Fig. 3.5 focuses on moderate 𝐿, the range
considered already emphasises that the instanton calculation allows for the treatment of
system sizes well beyond the reach of exact diagonalisation.

3.6 Conclusion

In this Chapter, we studied how coupling to a fermionic bath impacts the tunnel amplitude of
a particle, if the tunnelling between potential minima, where the bath is gapped, requires
a change in fermionic topology and hence a gap closing. In general, for fermions in 𝑑
dimensions, we used the field theoretical language of instantons to map this tunnelling
problem to that of interfaces between topologically distinct regions in 𝑑 + 1 dimensions.
This relation, as we elucidated in Sec. 3.4, amounts to stepping up on a dimensional ladder,
akin to the reversal of topological insulators’ and superconductors’ dimensional reduction
procedures discussed in Refs. [17, 18, 127, 169]. The existence of topologically protected
gapless boundary modes in these (𝑑 +1)-dimensional geometries leads to a suppression of
tunnelling amplitude compared to the value one would naïvely expect by taking the bath at its
instantaneous ground state. This suppression is exponential in the size of the fermionic system.
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We demonstrated this in detail on our 𝑑 = 1 example, including establishing an analytical
bound setting out the strongest possible fermionic suppression. This bound corresponds to
sharp instantons, a tractable scenario also applicable to 𝑑 > 1 where it is expected to lead to
analogous results: an exponential suppression with 𝐿𝑑 , with the exponent set by the boundary
modes’ density of states.

Complementary to this picture, we also showed how to use instanton field theory to
incorporate topology-changing fermions into a variational calculation. This method, which
also revealed an unexpected link to scattering matrices that usually arise in quantum transport
calculations, allowed us to probe a range between wide instantons (no fermionic suppression)
and sharp instantons (maximal fermionic suppression). We compared the tunnelling amplitude
obtained from this variational path-integral method with the energy splitting computed by
exact diagonalisation of the full many-body system. Our method uses only one variational
parameter (the instanton width), and this already yields results that match excellently with
exact diagonalisation, while being able to reach much larger systems sizes. In particular,
while we demonstrated its use on our 𝑑 = 1 system, the method is equally well applicable
to higher dimensions where exact diagonalisation would be limited to exceedingly small
systems.

Although we focused on conceptual aspects, our results may be relevant for the planar
Josephson systems [100–103] that served as inspiration. As in our 𝑑 = 1 model, the key
dimensionless parameters are 𝐸J/𝐸C and 𝜔0/Δ ∼

√
𝐸J𝐸C/Δ with Δ the induced supercon-

ducting gap. (Large 𝐸J/𝐸C again corresponds to the semiclassical regime where instanton
methods are expected to work, while

√
𝐸J𝐸C ≪ Δ renders the fermionic gap operative near

the potential minima.) In these systems, the effective Josephson energy ∝ 𝐿 and the charging
energy ∝ 1/𝐿 (being inversely proportional to capacitance). Hence, 𝜔0/Δ is fixed thus, unlike
the fixed 𝐸J/𝐸C case we used for assessing our variational method, the large 𝐿 regime can
be taken consistently with 𝜔0 ≪ Δ. Although due to

√︁
𝐸J/𝐸C ∝ 𝐿 even the naïve tunnelling

amplitude is suppressed exponentially, we stress that the suppression we found enhances
the tunnelling exponent. (In other setups, it may be possible to have kinetic and naïve
potential terms that do not scale with the size 𝐿 of the fermionic bath; then one may have an
𝐿-independent naïve tunnelling exponent, together with fixed 𝜔0 and thus a consistent large
𝐿 limit, and an exponential-in-𝐿 suppression solely from fermionic topological effects.)

Since the fermionic ground state energies in trivial and nontrivial regimes are not
necessarily equal, the observation of the fermionic suppression of the tunnelling amplitude via
the energy splitting may be challenging in these Josephson systems. However, the tunnelling
amplitude also impacts non-equilibrium effects which may be more amenable for observation
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Fig. 3.6 Cartoon of a ground state that is a superposition of two topologically distinct phases.
Such a superposition is not blocked on topological grounds in our setup, only suppressed
exponentially in the size of the system.

in experiments. In investigating these and other features, studying local versions of our model
(obtained by incorporating 𝜕𝑥𝜙) may offer a useful direction for the future.

The fermionic tunnelling suppression we found may be relevant for considering combining
topological and transmon qubits, as for example when applying schemes that utilise the
charging energy for braiding and parity readout [193–195, 95, 196] to planar Josephson
junctions [100, 101]. The tunnelling suppression could also potentially be used to better
suppress phase slips (and thus charge noise) in transmon qubits [108, 183].

The fact that tunnelling is only suppressed (but not completely blocked) between topolog-
ically distinct minima is also suggestive of the prospects to realise quantum superpositions
between topologically distinct fermionic ground states. This is especially intriguing for OBC,
where, as in our 𝑑 = 1 model, it can translate to superpositions of fermionic many-body states
with and without Majorana end modes, depicted in Figure 3.6. Owing to the exponentially lo-
calised nature of these Majorana end states, and to their localisation exponent being unrelated
to that of the tunnel suppression, these end states can meaningfully exist in moderate-sized
systems where tunnelling between topologically distinct minima can play a considerable role.





Chapter 4

Summary and Outlook

In this thesis, we have explored topological superconductivity in the presence of two extra
ingredients: crystalline symmetry and charging energy.

By adding rotational symmetry to 2D superconductors in Chapter 2, we observed
MZMs localised at the corners of a sample that, according to the Chern number, should
be topologically trivial. Moreover, we were able to predict this higher-order topology
using bulk quantities, namely the symmetry representations of negative-energy (occupied)
states. These irreps form the basis of the wider symmetry indicator approach to classifying
topological crystalline phases, which provides an efficient—though not exhaustive—mapping
of this symmetry-enriched space of topological phases. A consequence of this symmetry
indicator abstraction, however, is that the direct link between bulk invariants and the boundary
signature is lost. We restored this link by systematically mapping invariants to symmetry
properties of stacked Dirac models, which provide the natural low-energy description of
most topological phase transitions. With this description, constraints on the boundary theory
follow immediately in the form of a symmetry-enforced gap-closing on the surface, which
defines our second-order bulk-boundary correspondence. One of our key findings is that this
correspondence can crucially depend on which point group symmetry is left unbroken by
the termination, which manifested here as an interplay between the weak invariants and the
location of the rotation centre.

In Chapter 3, we considered a fermionic topological phase being controlled by a separate
variable that is itself subject to quantum fluctuations. The corresponding ingredients are
present in the modern planar Josephson junction platform for MZMs, so we chose to frame
our discussion in the language of circuit QED, where the control variable is the Josephson
phase difference 𝜙, whose fluctuations arise from charging energy. Fermions act as a bath for
𝜙, whose tunneling amplitude is exponentially suppressed by the fermions’ topology change.
We were able to accurately quantify this tunneling thanks to the powerful field-theoretic
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method of instantons, which we adapted to include and later integrate out a lattice of fermions.
The central difficulty was evaluating the resulting temporally-nonlocal effective action, though
we could bound the suppression from above through an analogy to the low-energy spectrum
of a topological superconductor in one dimension higher; there, we found the suppression
exponent to be linear in the number of fermions comprising the bath. This result agreed with
a numerically efficient novel time-ordered exponential calculation, which we could verify for
modest system sizes using exact diagonalisation.

This thesis brings to light many possible directions for future research. The most obvious
open question that follows from Chapter 2 is whether our stacked Dirac construction can give
the higher-order bulk boundary correspondence for other crystalline symmetry groups. If
symmetry indicators can be combined with other topological invariants to fully classify the
bulk, then the generality of stacked Dirac models would make it a promising candidate to
bridge between the bulk and boundary classification groups.1 However, we also saw a sixfold
rotation symmetry representation that could be furnished only by a cubic Dirac model, so this
approach would be strengthened by a separate analytical study into the boundary theory of
this ΔCh = ±3 two-band model. Luckily, we were able to avoid these nonlinearly-dispersing
Dirac models by choosing substitutes from the same stable equivalence class, and this strategy
may also work in other symmetry classes. Nevertheless, being able to directly treat these
cases without relying on stability would be advantageous, especially for potential links to
fragile topology [42], which is yet to be fully defined for superconductors.

Our results from adding crystalline symmetry also prompt us to reflect on what symmetries
are reasonable to impose on a system. In the bulk, crystalline symmetries are enforced by the
comparatively large electrostatic energy cost of moving ions away from thermodynamically
stable configurations, generating symmetric potentials for the electrons. On the boundary,
those electrostatic forces are very different and the symmetry constraints on the ions would
not be expected to be as rigid. Yet, our present conclusions about the boundary signature
assumed a nonlocal point group symmetry that applied globally across the boundary; indeed,
some features relied on the precise boundary symmetry, as exemplified in Sec. 2.6 where the
choice of rotation centre was critical. Nevertheless, one still expects MZMs at the corners
of a fully symmetric crystalline system to be robust against disorder that does not close the
boundary gap or bring corners together. This suggests a stability under local perturbations
away from the symmetric limit. A practically relevant question is what higher-order bulk
boundary correspondence survives when the spatial symmetry is only respected on average
(especially on the boundary), or when the system is polycrystalline with multiple misaligned

1Recall that on their own, symmetry indicators give only a proxy to the boundary classification group, as
seen from Eq. (1.34).



105

grains of moderate size. A similar question is being pursued in the more extreme case
of amorphous topological insulators [197, 198, 137], sometimes using a generalisation of
the Chern number to a real space topological marker [199, 200]. In the intermediate case,
crystalline symmetry would be loosely retained so one could take advantage of the recent
real space formulation of symmetry indicators [146] to investigate disorder. Disorder was
investigated for weak topological phases [201, 202] (the forerunner to topological crystalline
phases) where, as for strong topological phases, surface states did not Anderson-localise, so
long as the disorder respected translation-symmetry on average. Developing our approach to
the higher-order bulk-boundary correspondence in this case would be an interesting direction
for future research.

Coupling a bosonic quantum variable to a system of fermions is also a general scenario that
could arise in other condensed matter tunneling problems. We showed that adding fermions
always suppresses the tunneling compared to a naive potential because of the fermionic part
of the wavefunction. While this effect is most drastic when the fermions undergo a bulk gap
closing, our instanton technique can quantify the transition from adiabaticity to a sharp inner
product between two distinct fermionic wavefunctions. This type of tunneling calculation
could be relevant for mesoscale quantum phase transitions. Such transitions may not be that
far out of experimental reach: for example, the entanglement between many fermions recently
observed in ferromagnets [203] has some parallels to the type of superposition we proposed
in Chapter 3. In transmon qubits, the suppression of tunneling due to fermions also provides
a separate mechanism to reduce charge noise without compromising anharmonicity. It would
also be interesting to explore the consequences of finite temperature on these tunneling
effects.

Chapter 3 has demonstrated how the consequences of single-particle topology are still felt
even when adding interactions. This shows that other fruitful directions open up from adding
interactions to free-fermion topological systems separate from constructing the interacting
SPT classification. [Indeed, in our case the non-locality of the charging term (�̂� −𝑁g)2
means it cannot neatly fit into an SPT classification.] The controllability of charging energy
in particular allows interacting systems to be engineered that build on the properties of the
underlying non-interacting topological superconducting phase. This principle is already
on display in 2D second-order topological superconductors where local parity constraints
(implementable through charging energy) can create topological ordered stabiliser codes [97]
that rely on the degeneracy from corner MZMs.
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Appendix A

Additional Derivations for
Bulk-Boundary Correspondence

A.1 Restrictions on Choice of Unit Cell

The bulk classification of Ref. [56] of rotationally symmetric superconductors employed in
the main text relies on having momentum-independent matrices 𝑟𝑛 that rotate the momentum-
space tight-binding Hamiltonian, cf. Eq. (2.2). Generally, the form of the tight-binding
Hamiltonian depends on the choice of the basis functions. In particular, using orbitals
𝜑R,𝛼 (r−R−d𝛼) for each orbital 𝛼 at the position R+d𝛼 with the Bravais lattice vector R
and atomic position d𝛼 enables us to construct basis functions [204, 148]

𝜙k,𝛼 (r) =
1√
𝑁

∑︁
R
𝑒−𝑖k·(R+d𝛼)𝜑R,𝛼 (r−R−d𝛼) (A.1)

where the sum goes over all 𝑁 unit cells at positions R. The resulting tight-binding
Hamiltonian

�̄�𝛼𝛽 (k) =
∫
𝑑2r𝜙∗k,𝛼 (r)�̂�𝜙k,𝛽 (r) (A.2)

with the operator �̂� acting on the basis functions is not periodic under a shift of a reciprocal
lattice vector G, but rather transforms [147, 148]

�̄� (k+G) =V†(G)�̄� (k)V(G). (A.3)

The unitary matrixV(G) takes into account the momentum-dependence of the different atomic
sites at d𝛼 within each unit cell. The matrix is diagonal with elementsV𝛼𝛽 (G) = 𝑒−𝑖d𝛼 ·G𝛿𝛼𝛽.
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The benefit of this basis choice is that matrix representations of symmorphic symmetries,
such as rotation, are always momentum-independent. For example, a rotation �̂� that rotates
to 𝑅𝑛 (R+d𝛼) = R′+d𝛽 changes the creation operators of the orbital at R+d𝛼 [124]

�̂�𝑐†𝛼 (R+d𝛼) �̂�−1 = 𝑐†𝛽 (R′+d𝛽)R𝛽𝛼 (A.4)

where the unitary matrix R𝛼𝛽 accounts for rotation of atomic orbitals, as already used in
the main text. This implies for the momentum-space representation of the annihilation
operator [148]

�̂�𝑐†𝛼 (k) �̂�−1 =�̂�
∑︁
R
𝑐†𝛼 (R+d𝛼)𝑒𝑖k·(R+d𝛼) �̂�−1 (A.5)

=
∑︁
R
𝑐†𝛽 (R′+d𝛽)R𝛽𝛼𝑒𝑖k·(R+d𝛼) . (A.6)

Using R+d𝛼 = 𝑅𝑇𝑛 (R′+d𝛽) and changing the summation from R→ R′ gives

�̂�𝑐†𝛼 (k) �̂�−1 =
∑︁
R′
𝑐†𝛽 (R′+d𝛽)𝑒𝑖(𝑅𝑛k)·(R′+d𝛽)R𝛽𝛼 (A.7)

=𝑐†𝛽 (𝑅𝑛k)R𝛽𝛼 . (A.8)

The Hamiltonian �̂� =
∑

k 𝑐
†
𝛼 (k)�̄�𝛼𝛽 (k)𝑐𝛽 (k) is invariant under the rotation �̂�, giving [124]

�̂��̂� �̂�−1 =
∑︁

k
𝑐†𝛼 (𝑅𝑛k)R𝛼𝛼′ �̄�𝛼′𝛽′ (k)R𝛽𝛽′𝑐𝛽 (𝑅𝑛k)

=
∑︁

k
𝑐†𝛼 (𝑅𝑛k)�̄�𝛼𝛽 (𝑅𝑛k)𝑐𝛽 (𝑅𝑛k) = �̂� (A.9)

which implies R�̄� (k)R† = �̄� (𝑅𝑛k) for the tight-binding Hamiltonian. For superconducting
BdG Hamiltonians, the structure of the Nambu spinors needs to be taken into account, which
promotes the operator R to

𝑟𝑛 =

(
R
R∗

)
, (A.10)

cf. Eq. (2.2). These operators are always independent of momentum; cf. Ref. [148] for a
more general discussion that includes both symmorphic and nonsymmorphic symmetries.

In the main text, we implicitly use a different set of basis functions that gives the
tight-binding Hamiltonian

𝐻 (k) =V(k)�̄� (k)V†(k). (A.11)
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This different basis choice has the advantage that the tight-binding Hamiltonian is invariant
upon a shift by a reciprocal lattice vector, especially that H is identical at certain HSPs
𝚷 (𝑛) and their rotated counterparts 𝑅𝑛𝚷 (𝑛) , e.g., at M and 𝑅4M in 𝐶4-symmetric lattices.
However, as pointed out in the main text, the operator 𝑟𝑛 is generally momentum-dependent,
in particular,

𝐻 (𝑅k) =V(𝑅𝑛k)𝑟𝑛V†(k)𝐻 (k)V(k)𝑟†𝑛V†(𝑅𝑛k) (A.12)

= 𝑟′𝑛 (k)𝐻 (k)𝑟′𝑛†(k) (A.13)

with 𝑟′𝑛 (k) =V(𝑅𝑛k)𝑟𝑛V†(k). We restore Eq. (2.2) when 𝑟𝑛V†(k) =V†(𝑅𝑛k)𝑟𝑛. This
relation is only true when each atomic position d𝛼 is rotated to a (not necessarily different)
position d𝛽 within the same unit cell. We realize this by computing the action of 𝑟𝑛 on
V†(k) explicitly. The matrix 𝑟𝑛 shifts all atomic sites d𝛼→ 𝑅𝑛d𝛼 and transforms the internal
degrees of freedom on each d𝛼 (for example, 𝑝𝑥 orbitals are transformed into 𝑝𝑦 orbitals
under a 𝐶4 rotation). The matrix elements of 𝑟𝑛 can thus be written

𝑟
𝛼𝛽
𝑛 = 𝑟𝛼𝛽𝛿d𝛼,𝑅𝑛d𝛽

, (A.14)

where 𝑟 transforms the internal degrees of freedom and the Kronecker delta ensures that all
sites d𝛽 are changed to 𝑅𝑛d𝛽. Then,

𝑟𝑛V†(k)
��
𝛼𝛽

= 𝑟𝛼𝛼′𝛿d𝛼,𝑅𝑛d𝛼′ 𝑒
𝑖k·d𝛼′ 𝛿𝛼′𝛽 = 𝑒

𝑖k·𝑅𝑇𝑛d𝛼𝑟𝛼𝛽𝛿d𝛼,𝑅𝑛d𝛽

= 𝑒𝑖(𝑅𝑛k)·d𝛼𝛿𝛼𝛼′𝑟𝛼′𝛽𝛿d𝛼′ ,𝑅𝑛d𝛽
= V†(𝑅𝑛k)𝑟𝑛

��
𝛼𝛽
, (A.15)

i.e., the operator 𝑟𝑛 acting on the tight-binding Hamiltonian 𝐻 (k) is momentum-independent.
This derivation relies on a rotationally invariant unit cell, since each unit cell must contain
both atomic positions d𝛼 and 𝑅d𝛼.

Not every rotationally invariant lattice allows us to define unit cells that respect rotational
invariance individually, as we demonstrate using Fig. A.1. The lattice shown in Fig. A.1(a)
is 𝐶4-symmetric lattice with four atomic sites in each unit cell. Two different choices of
unit cells respect rotational invariance individually and are compatible with a finite system.
Similarly, the lattice shown in Fig. A.1(b) and (c) is 𝐶4-symmetric, however, any finite system
that respect𝐶4 symmetry is incompatible with a𝐶4-symmetric unit cell. While the unit cell in
Fig. A.1(b) is rotationally invariant, it contains fractional atomic sites. Any lattice boundary
must therefore contain additional partial unit cells. The unit cell choice in Fig. A.1(c) is
compatible with a finite system, but the unit cell itself is not 𝐶4-symmetric, such that d𝛼 and
𝑅d𝛼 are not contained in each unit cell. This gives some additional momentum-dependent
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Fig. A.1 Different𝐶4-symmetric lattices. (a) Each unit cell respects𝐶4 symmetry individually
and is compatible with a finite lattice. (b) Each unit cell respects 𝐶4 symmetry, but contains
fractional atomic sites and is therefore incompatible with a finite lattice. (c) For the same
lattice as in (b), we can define a different unit cell that is compatible with a finite system, but
does not respect 𝐶4 symmetry.

contribution to 𝑟′𝑛 (k) =V(𝑅k)𝑟𝑛V†(k), which in turn spoils the bulk classification used in
the main text that relies on [𝑟𝑛, 𝐻 (𝚷 (𝑛))] = 0 [56]. The momentum-dependent contribution
is generally model-dependent, such that a classification is beyond the scope of this work.

A.2 Derivation of The Edge Theory

In this Appendix, we show explicitly how each pair of bands in the stack of Dirac Hamiltonians
give rise to chiral edge modes, in a description that allows for smooth (on the scale of the
lattice spacing) variations of the boundary. We follow a similar prescription to Refs. [46, 37],
in which we project onto the low-energy subspace of states localized to the edge of the
material. This gives rise to explicit forms of the rotation operator and PH operator on the
edge—although overall signs are generally basis-dependent, certain signatures that determine
the presence of corner modes are independent of the choice of basis; cf. Appendix A.2.2.

A.2.1 Effective Boundary Hamiltonian

For each Dirac model in the stack, allow the mass term to vary spatially 𝑚𝛼→ 𝑚𝛼 (r) and
decompose momentum into components parallel and perpendicular to the boundary. For
the unit vector n̂r = (cos𝜑, sin𝜑) normal to the edge (which varies as a function of position
r along the boundary), decompose k = 𝑘 ∥n̂∥ + 𝑘⊥n̂r and take n̂∥ = (−sin𝜑,cos𝜑) to follow
the edge in a counterclockwise direction such that 𝑘 ∥ may be positive or negative. (We also
define k∥ = 𝑘 ∥n̂∥ for convenience.) Let 𝜆 be a coordinate along the edge normal, where 𝜆 = 0
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denotes the position of the boundary where 𝑚𝛼 (𝜆 = 0) = 0 changes sign. When a transition is
realized through many simultaneous gap closings, all gap closings 𝑚𝛼 (r) = 0 happen at the
same boundary. In this notation, each Hamiltonian in the stack reads

H𝛼 (k) = 𝑚𝛼 (𝜆)𝜎3 + 𝑣𝛼k∥ ·𝝈− 𝑖𝑣𝛼n̂r ·𝝈𝜕𝜆 (A.16)

with 𝑣𝛼 > 0 as also used in the main text. In principle, since the normal vectors n̂r and n̂∥
depend on the position r along the boundary, the momentum operator k∥ does not commute
with them. As we only want to consider slowly varying normal vectors, we can neglect
this nonzero commutator. Similarly, this approach does not cover sharp changes of the
normal vectors [205], which appear directly at the corners of a sample. This does not limit
our analysis, as the description away from these sharp changes remains valid and allows to
observe differences between smooth edges.

When a mass term changes sign as sgn(𝑚𝛼 (𝜆)) = sgn(𝜆) along the transition, chiral
modes localized to the edge may be found using the ansatz

Ψ𝛼 (k∥ ,𝜆) = 𝑒−
∫ 𝜆

0 𝑑𝜆′𝑚𝛼 (𝜆′)/𝑣𝛼𝜓𝛼 (k∥). (A.17)

Substituting this ansatz into the Hamiltonian, we obtain(
2𝑚𝛼 (𝜆)𝜎3𝑃+ + 𝑣𝛼k∥ ·𝝈

)
𝜓𝛼 (k∥) = 𝐸k∥𝜓𝛼 (k∥), (A.18)

with the projector 𝑃± = 1
2 (1± 𝑖𝜎3n̂r ·𝝈) = 1

2 (1∓ n̂∥ ·𝝈). The wave function 𝜓𝛼 (k∥) is only a
𝜆-independent solution when 𝑃+𝜓𝛼 (k∥) = 0. As 𝑃+𝜓𝛼 (k∥) = 0 implies 𝑃−𝜓𝛼 (k∥) = 𝜓𝛼 (k∥),
the solution satisfies

𝑣𝛼k∥ ·𝝈𝜓𝛼 (k∥) = 𝑣𝛼𝑘 ∥𝜓𝛼 (k∥). (A.19)

Had the bulk mass changed in the opposite way as sgn(𝑚𝛼 (𝜆)) = −sgn(𝜆), the ansatz would
have a different sign in the exponent, and the solutions 𝑃−𝜓𝛼 (k∥) = 0 would propagate in the
opposite direction.

Here we switch to a more convenient basis, generated by 𝑉r→ such that

𝑉†r→𝑃+𝑉r→ =
1
2
(1−𝜎3), (A.20a)

𝑉†r→(𝑣𝛼k∥ ·𝝈)𝑉r→ = 𝑣𝛼𝑘 ∥𝜎3. (A.20b)

This can be achieved by choosing 𝑉r→ ∝ exp
(
𝑖 𝜋4 n̂r ·𝝈

)
, where we shall fix this constant of

proportionality below using PH symmetry. This allows the 1×1 edge Hamiltonian to be easily
procured by applying a projector 𝑝+ = (1,0)𝑇 to pick out the correct subspace. Explicitly
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performing these steps, we end up with a low-energy edge Hamiltonian for right-movers

ℎ𝛼→r,k ≡ 𝑝𝑇+𝑉†r→H𝛼 (k)𝑉r→𝑝+ (A.21a)

= 𝑣𝛼𝑘 ∥ . (A.21b)

Performing similar steps for left-moving ansätze, differing in the choice of basis 𝑉r← and
projected component 𝑝− = (0,1)𝑇—though one still has 𝑉r← ∝ exp

(
𝑖 𝜋4 n̂r ·𝝈

)
—we obtain a

similar edge Hamiltonian dispersing with opposite velocity

ℎ
𝛽←
r,k ≡ 𝑝𝑇−𝑉†r←H 𝛽 (k)𝑉r←𝑝− (A.22a)

= −𝑣𝛽𝑘 ∥ . (A.22b)

A.2.2 Surface Projections of Rotation Representations

The advantage of the transformation that projects on boundary modes [Eqs. (A.21) and
(A.22)] is that it allows to track the transformation of edge modes, as we show in this
section. We first discuss how to fix a basis requiring PH symmetry before computing the
edge projections of rotation and PH symmetry.

Choice of Basis

The transformation 𝑉r→ that rotates the projector 𝑃+ into 𝑉†r→𝑃+𝑉r→ = 1
2 (1−𝜎3) is only

defined up to a phase, 𝑉r→ ∝ exp
(
𝑖 𝜋4 n̂r ·𝝈

)
. Here, we fix this phase by requiring that the

eigenstates 𝜓𝛼 (k) = 𝑉r→𝑝+ respect PH symmetry, i.e., Ξ𝜓𝛼 (−k∥) = 𝜓𝛼 (k∥) with Ξ = 𝜎1K.
Further using 𝑝+ = (1,0)𝑇 gives

𝑉r→ = 𝑒−𝑖(𝜋/4+𝜑/2) exp
(
𝑖
𝜋

4
n̂r ·𝝈

)
. (A.23)

Note that this is the same as requiring

𝑟★𝑛𝑉r→𝑝+ =𝑉𝑅𝑛r→𝑝+, (A.24)

where 𝑟★𝑛 = 𝑒−𝑖𝜎3𝜋/𝑛 is the positively signed rotation representation. For left-moving modes,
the basis rotation operator is chosen as

𝑉r← = 𝑒−𝑖(𝜋/4−𝜑/2) exp
(
𝑖
𝜋

4
n̂r ·𝝈

)
(A.25)
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for the same reasons.

Surface Rotation Representations from Bulk

Using the notation introduced above, we show how to derive the edge rotation representation
from the bulk representation along the lines of Ref. [37]. For some gap closings, e.g.,
at 𝚪 and M in 𝐶4-invariant systems, each Dirac Hamiltonian from the stack respects
rotational invariance via 𝑟𝛼𝑛H𝛼 (k)𝑟𝛼†𝑛 =H𝛼 (𝑅𝑛k); cf. Eq. (2.23). The edge Hamiltonian for
right-moving states, Eq. (A.21), thus transforms as

ℎ𝛼→r,k =𝑝𝑇+𝑉
†
r→H𝛼 (k)𝑉r→𝑝+ (A.26)

=𝑝𝑇+𝑉
†
r→𝑟

𝛼†
𝑛,c𝑉𝑅𝑛r→𝑉

†
𝑅𝑛r→H𝛼 (𝑅𝑛k)𝑉𝑅𝑛r→𝑉

†
𝑅𝑛r→𝑟

𝛼
𝑛,c𝑉r→𝑝+,

where we inserted 1 =𝑉𝑅𝑛r→𝑉
†
𝑅𝑛r→. Using that 𝑝𝑇+ 𝑝+ = 1 and [𝑝+𝑝𝑇+ ,𝑉†r→𝑟𝛼†𝑛,c𝑉𝑅𝑛r→] = 0, we

obtain

ℎ𝛼→r,k =𝑝𝑇+ 𝑝+𝑝
𝑇
+𝑉
†
r→𝑟

𝛼†
𝑛,c𝑉𝑅𝑛r→𝑉

†
𝑅𝑛r→H𝛼 (𝑅𝑛k)

×𝑉𝑅𝑛r→𝑉†𝑅𝑛r→𝑟
𝛼
𝑛,c𝑉r→𝑝+𝑝

𝑇
+ 𝑝+

=(𝑝𝑇+𝑉†r→𝑟𝛼†𝑛,c𝑉𝑅𝑛r→𝑝+) ℎ𝛼→𝑅𝑛r,𝑅𝑛k (𝑝𝑇+𝑉†𝑅𝑛r→𝑟
𝛼
𝑛,c𝑉r→𝑝+)

≡𝑢𝛼†𝑛,c ℎ𝛼→𝑅𝑛r,𝑅𝑛k𝑢
𝛼
𝑛,c. (A.27)

The equivalent result for left-movers is the same with (+,→) replaced by (−,←). Using
Eq. (A.24), we see that 𝑟𝛼𝑛,c = 𝜂𝛼𝑒−𝑖𝜎3𝜋/𝑛 implies

𝑢𝛼𝑛,c = 𝑝
𝑇
+𝑉
†
𝑅𝑛r→𝑟

𝛼
𝑛,c𝑉r→𝑝+ = 𝜂𝛼 . (A.28)

Thus each 𝑢𝛼𝑛,c is simply a sign. Since the sign itself is basis-dependent, only differences in
sign can be of physical importance, as we discussed in the main text.

Other High Symmetry Points

When a Dirac Hamiltonian at a HSP does not transform into itself, but to another HSP under
rotation, the rotation representation must account for this. For example, in a 𝐶4-symmetric
system, the Dirac Hamiltonian at X transforms to X′ and vice versa. As discussed in the main
text, these Dirac Hamiltonians must be combined into a 4×4 Hamiltonian

H⊕ (k) ≡ H𝛼
X (k) ⊕H𝛼+1

X′ (k). (A.29)
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Denoting the space of the two stacked Dirac Hamiltonians by 𝜏𝜇, two choices of rotation
representation are consistent with PH symmetry,

𝑟⊕4,c =

𝑒−𝑖𝜎3𝜋/4 ⊗ 𝑖𝜏2

𝑒−𝑖𝜎3𝜋/4 ⊗ 𝜏1,
(A.30)

where we neglect an inconsequential possibility for an overall sign. The projection onto an
edge is a straightforward generalization of the approach we discussed above. Both projector
𝑝± and basis rotation𝑉r𝑠𝛼 (with 𝑠𝛼 ∈ {←,→}) must be stacked. While the projector is stacked
via

𝑝𝑇+ =

(
1 0 0 0
0 0 1 0

)
, 𝑝𝑇− =

(
0 1 0 0
0 0 0 1

)
, (A.31)

where the inner degree of freedom corresponds to the𝜎𝜇 space and the outer degree of freedom
to the 𝜏𝜈 space, two choices to stack 𝑉r𝑠𝛼 are consistent with PH symmetry, 𝑉r𝑠𝛼 ⊕ (𝑠𝑣𝑉r𝑠𝛼)
with the sign 𝑠𝑣 = ±1. The projection ℎ⊕𝑠𝛼r,k of the Hamiltonian onto the edge at r is thus a
2×2 matrix. As the mass terms at X and X′ must have the same sign, the two modes of ℎ⊕𝑠𝛼r,k
are always copropagating, ℎ⊕→r,k = 𝑣𝛼𝑘 ∥𝜏0 and ℎ⊕←r,k = −𝑣𝛼𝑘 ∥𝜏0.

Following the derivation in Sec. A.2.2, the resulting representation of the rotation on the
edge is

𝑢𝛼4,c =


𝑠𝑣𝑖𝜏2 for 𝑟⊕4,c = 𝑒

−𝑖𝜎3𝜋/4 ⊗ 𝑖𝜏2

𝑠𝑣𝜏1 for 𝑟⊕4,c = 𝑒
−𝑖𝜎3𝜋/4 ⊗ 𝜏1.

(A.32)

Since the overall sign 𝑠𝑣 does not change det𝑢𝛼4,c = ±1, it can be safely neglected as we do in
the main text.

A.2.3 Edge Projection of Particle-Hole Operator

Since the phase of the chiral edge modes 𝜓𝛼 (k∥) is chosen such these states respect bulk PH
symmetry, the edge projection of PH symmetry simply becomes complex conjugation. We
realize this by writing the edge Hamiltonian in second-quantized notation for a position r on
the boundary

ℎ̂r =
∑︁

k∥ ,𝛼𝛽
�̂�†𝛼 (k∥) ℎ𝛼𝛽r,k∥ �̂�𝛽 (k∥) (A.33)

with operators �̂�𝛼 (k∥) = 𝜓∗𝛼 (k∥) · 𝜉𝛼 (k∥) and the Nambu spinor 𝜉𝛼 (k) = (𝑐𝛼 (k), 𝑐†𝛼 (−k)).
As the wave function respects PH symmetry, 𝜓∗𝛼 (k∥) = 𝜎𝑥𝜓𝛼 (−k∥), we realize that the
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annihilation operator �̂�𝛼 (k∥) equals the corresponding creation operator at its negative
momentum,

�̂�𝛼 (k∥) = 𝜓𝛼 (−k∥) · (𝜎𝑥𝜉𝛼 (k∥)) = 𝜓𝛼 (−k∥) · 𝜉†𝛼 (−k∥) (A.34)

= �̂�†𝛼 (−k∥), (A.35)

where we used that 𝜎𝑥𝜉𝛼 (k) = 𝜉†𝛼 (−k). This implies that the �̂�𝛼 (k∥) are in fact (Fourier-
transformed) Majorana fields. Further using Tr

[
ℎr,k∥=0

]
= 0, the second-quantized Hamilto-

nian reads
ℎ̂r = −

∑︁
k∥ ,𝛼𝛽

�̂�†𝛼 (k∥)ℎ𝛽𝛼r,−k�̂�𝛽 (k∥). (A.36)

This implies that ℎ𝛽𝛼r,−k∥ = −ℎ
𝛼𝛽
r,k∥ , or using the Hermiticity of ℎr,k∥ , that

ℎr,k∥ = −Kℎr,−k∥K, (A.37)

i.e., PH symmetry simply reduces to complex conjugation when projected to an edge.





Appendix B

Additional Proofs about The Fermionic
Determinant

B.1 Jackiw-Rebbi Derivation of Edge Mode Spectrum

In this Appendix, we derive the edge mode spectrum associated with an instanton using a
Jackiw-Rebbi-like ansatz [31]. We shall use the momentum-space representationH𝜙 (𝑘) of
the 1D model [Eq. (3.1)] to write the Lagrangian

L(𝜏, 𝑘) = 𝜕𝜏 +H𝜙𝜏 (𝑘). (B.1)

Recall that a sign change of cos𝜙𝜏 corresponds to a topological phase transition ofH𝜙𝜏 (𝑘).
As in the main text, we consider the Hermitian Hamiltonian H̃ (𝜏, 𝑘) = 𝑖𝜎1L(𝜏, 𝑘).

We deal solely with the case of unequal gaps on both sides of the transition because this
encompasses the case of equal gaps. To this end, we modify the gap at 𝜙 = 0 as Δ→ Δ′ = 𝜂Δ,
where 𝜂 ∈ (0,1] is a parameter describing the asymmetry of the gap. Separating out the 𝜙𝜏
dependence, the Hermitian Hamiltonian is now

H̃ (𝜏, 𝑘) =Δ
2

cos𝜙𝜏 [(𝜂+ cos 𝑘)𝜎2− sin 𝑘𝜎3]

+ Δ
2
[(𝜂− cos 𝑘)𝜎2 + sin 𝑘𝜎3] + 𝑖𝜕𝜏𝜎1. (B.2)

Suppose that there is an instanton located at 𝜏0 which closes the gap: cos𝜙𝜏<𝜏0 > 0 and
cos𝜙𝜏>𝜏0 < 0. One might propose an ansatz

Ψ (𝑘, 𝜏) ?
= exp

[
Δcos (𝑘/2)

∫ 𝜏

𝜏0

𝑑𝜏′cos𝜙𝜏′
]
𝜓𝑘 (B.3)
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localized at 𝜏0, where the sign change of cos𝜙𝜏 ensures that the solution remains normalizable
on both sides of the transition. Such an ansatz fails for 𝜂 ≠ 1 because the decay of the bound
state needs to be different in regions with a different gap [206, 207]. We therefore try a
judicious rewriting of the Hamiltonian (B.2) that immediately suggests a better ansatz, namely

H̃ =𝑖𝜕𝜏𝜎1 + Δ2 (𝛼𝑘 + cos𝜙𝜏) [(𝜂+ cos 𝑘)𝜎2− sin 𝑘𝜎3]

+Δ
2
[(𝜂(1−𝛼𝑘 ) − (1+𝛼𝑘 ) cos 𝑘)𝜎2 + (1+𝛼𝑘 ) sin 𝑘𝜎3] , (B.4)

where we introduce a parameter 𝛼𝑘 to label the reshuffling. We will soon see that only one
choice of 𝛼𝑘 makes the ansatz work. This new form suggests the ansatz

Ψ = exp
[
Δ
2

√︃
1+𝜂2 +2𝜂 cos 𝑘

∫ 𝜏

𝜏0

𝑑𝜏′(𝛼𝑘 + cos𝜙𝜏′)
]
𝜓𝑘 (B.5)

that factorizes the Hamiltonian as

H̃𝜓𝑘 =
[
𝑖Δ(𝛼𝑘 + cos𝜙𝜏)

√︃
1+𝜂2 +2𝜂 cos 𝑘𝜎1𝑄𝑘 + ℎ𝑘

]
𝜓𝑘 . (B.6)

with the projector

𝑄𝑘 =
1
2

[
𝜎0 + (𝜂+ cos 𝑘)𝜎3 + sin 𝑘𝜎2√︁

1+𝜂2 +2𝜂 cos 𝑘

]
=𝑄2

𝑘 , (B.7)

and the 𝜏-independent term

ℎ𝑘 =
Δ
2
[(𝜂(1−𝛼𝑘 )− (1+𝛼𝑘 ) cos 𝑘)𝜎2 + (1+𝛼𝑘 ) sin 𝑘𝜎3] . (B.8)

To get 𝜏-independent solutions we project onto the 𝑄𝑘𝜓
+
𝑘 = 0 subspace in which the

Hamiltonian is simply H̃𝜓+𝑘 = ℎ𝑘𝜓+𝑘 . For this to be valid, we need 𝜓+𝑘 to be a simultaneous
eigenstate of both the projector and the remaining effective Hamiltonian, i.e. [𝑄𝑘 , ℎ𝑘 ] = 0,
which holds if

𝛼𝑘 =
𝜂2−1

1+𝜂2 +2𝜂 cos 𝑘
. (B.9)

A crucial observation is that 𝛼𝑘 monotonically decreases from 𝛼𝑘=0 = (𝜂 − 1)/(𝜂 + 1) to
𝛼𝑘=𝜋 = (𝜂 + 1)/(𝜂− 1), which means that there exists a range of 𝑘 for which 𝛼𝑘 < −1 and
the ansatz of Eq. (B.5) is no longer normalizable. Thus bound states only exist in the range
|𝑘 | ≤ arccos (−𝜂), for which the dispersion is given by

𝐸±∥ (𝑘) =
Δ
2

√︃
(1+𝛼𝑘 )2 +𝜂2(1−𝛼𝑘 )2−2𝜂(1−𝛼2

𝑘 ) cos 𝑘, (B.10)
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saturating at the value of the reduced gap Δ′ = 𝜂Δ. Setting 𝜂 = 1 recovers the equal gap case,
which has bound states for all 𝑘 with simple dispersion

𝐸±∥ (𝑘) = Δsin (𝑘/2) (B.11)

quoted in the main text. We have thus derived the spectrum of the chiral edge mode along the
spatial direction, bound to each instanton. Had cos𝜙𝜏 changed sign in the opposite direction
(as for an anti-instanton), the ansatz in Eq. (B.5) would need a minus sign in the exponent to
be normalizable, and we would have derived an edge mode of opposite chirality.

Recall from Sec. 3.4.1 that for the OBC case to have symmetric wells, one tunes the gap
inequality parameter to be 𝜂 = 1− 1

𝐿 , which we may substitute into the above expressions to
find the chiral edge mode spectrum associated with each instanton.

B.2 Proof that Fermions Guarantee Suppression

In this appendix we prove that the effect of eigenstate evolution is always to suppress tunnelling.
We will do this by showing that the fermionic potential �̃�f [𝜙𝜏] is always greater than or
equal to its naïve equivalent �̃�n [𝜙𝜏]. Recall from Eq. (3.36) in the main text that the primary
object of interest is the time ordered exponential, which we can express as the Δ𝜏 = 𝛽

𝑁 → 0
continuum limit of the product

M ≡ T exp
[
−
∫ 𝛽

0
𝑑𝜏H𝜙𝜏

]
= 𝑒−H𝜙𝑁

Δ𝜏𝑒−H𝜙𝑁−1Δ𝜏 · · · 𝑒−H𝜙2Δ𝜏𝑒−H𝜙1Δ𝜏 . (B.12)

The fermionic potential follows from the eigenvalues 𝜌𝑚 (M) of this 2𝐿 × 2𝐿 matrix M.
Specifically, we want to consider the magnitude of

| exp
{−2�̃�f [𝜙𝜏]

} | = 2−2𝐿
∏
𝑚

����√︁𝜌𝑚 (M) + 1√︁
𝜌𝑚 (M)

���� ≤ 2−2𝐿
∏
𝑚

(√︁
|𝜌𝑚 (M) | + 1√︁

|𝜌𝑚 (M) |

)
,

(B.13)
where the right-hand side follows from the triangle inequality. We also recognise that the
naïve potential follows the same calculation but with the Hamiltonians replaced by only their
spectral parts: H𝜙𝜏 → ⊕𝑚𝜀+𝜙𝜏 ,𝑚𝜎3. Let the corresponding naive product be labelled Mn,
noting that it is much easier to calculate because each matrix in the product commutes.

We start by getting an inequality for the eigenvalues in the fermionic and naïve cases. Let
M’s eigenvalues 𝜌𝑚 (M) be nonincreasingly ordered as |𝜌1(M) | ≥ · · · ≥ |𝜌2𝐿 (M) |, and let its
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singular values1 𝜎𝑚 (M) be ordered similarly as 𝜎1(M) ≥ · · · ≥ 𝜎2𝐿 (M). The first step is to
invoke Weyl’s inequality:

𝑘∏
𝑚=1
|𝜌𝑚 (M) | ≤

𝑘∏
𝑚=1

𝜎𝑚 (M), (B.14)

for 𝑘 = 1,2, . . . ,2𝐿. For generic complex matrices A,B ∈ℂ2𝐿×2𝐿 , there also holds an inequality
between the singular values of products of matrices:

𝑘∏
𝑚=1

𝜎𝑚 (AB) ≤
𝑘∏

𝑚=1
𝜎𝑚 (A)𝜎𝑚 (B). (B.15)

We can use Eqs. (B.14) and (B.15) recursively on the product definition Eq. (B.12) to conclude
that

𝑘∏
𝑚=1
|𝜌𝑚 (M) | ≤

𝑘∏
𝑚=1

𝑁∏
𝑖=1
𝜎𝑚 (exp

{−H𝜙𝑖Δ𝜏
}) = 𝑘∏

𝑚=1

𝑁∏
𝑖=1

exp
{
𝜀𝜙𝑖 ,𝑚Δ𝜏

}
, (B.16)

where the last equality follows because each time-slice contains a positive definite Hermitian
matrix (and we order energies as 𝜀𝜙,1 ≥ · · · ≥ 𝜀𝜙,2𝐿). We may recognise the right-hand side
as the eigenvalues of the naïve product Mn, therefore

𝑘∏
𝑚=1
|𝜌𝑚 (M) | ≤

𝑘∏
𝑚=1

𝜌𝑚 (Mn). (B.17)

By PH symmetry, 𝜌𝑚 (M) = [𝜌2𝐿−𝑚+1(M)]−1, we also have

2𝐿∏
𝑚=1
|𝜌𝑚 (M) | =

2𝐿∏
𝑚=1

𝜌𝑚 (Mn) = 1. (B.18)

We can therefore say that the ordered vector n = [log 𝜌1(Mn), . . . , log 𝜌2𝐿 (Mn)] majorises the
ordered vector f = [log |𝜌1(M) |, . . . , log |𝜌2𝐿 (M) |], written f ≺ n.

Next, we aim to show, using convex analysis, that an inequality for the fermionic and
naive potentials follows from the majorisation relation between these vectors. Consider a
function 𝑢(x) on real vectors x ∈ ℝ𝑑 . Such a function is called Schur-convex if an inequality
follows from majorisation of its argument, i.e.,

𝑢(x) is Schur-convex iff x ≺ y =⇒ 𝑢(x) ≤ 𝑢(y). (B.19)

1Recall that singular values are given by 𝜎(A) =
√︁
𝜌(A†A).
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According to the Schur-Ostrowski condition, 𝑢(x) is Schur-convex if and only if

(𝑥𝑚 − 𝑥𝑛)
(
𝜕𝑢

𝜕𝑥𝑚
− 𝜕𝑢
𝜕𝑥𝑛

)
≥ 0 ∀x ∈ ℝ𝑑 . (B.20)

Now specify the function to be 𝑢(x) = ∏2𝐿
𝑚=1 cosh [𝑥𝑚/2], in which case we can verify that

(𝑥𝑚 − 𝑥𝑛)
(
𝜕𝑢

𝜕𝑥𝑚
− 𝜕𝑢
𝜕𝑥𝑛

)
=

1
2
(𝑥𝑚 − 𝑥𝑛) sinh

[
1
2
(𝑥𝑚 − 𝑥𝑛)

] ∏
𝑙≠𝑚,𝑛

cosh
[
1
2
𝑥𝑙

]
≥ 0, (B.21)

so 𝑢(x) is Schur-convex. We selected this form of 𝑢(x) because, by Eq. (B.13), 𝑢(n) =
exp

{−2�̃�n [𝜙𝜏]
}

and 𝑢(f) = exp
{−2Re�̃�f [𝜙𝜏]

}
. Using the majorisation relation f ≺ n we

have already proven and Schur-convexity, we therefore have 𝑢(f) ≤ 𝑢(n) and

Re�̃�f [𝜙𝜏] ≥ �̃�n [𝜙𝜏] . (B.22)

That is, the real part of the fermionic potential is provably greater than or equal to the naïve
potential. (For the chiral symmetric case in the main text, where we calculated �̃�f [𝜙𝜏] from
the spectrum of a Hermitian Hamiltonian, we can further choose �̃�f [𝜙𝜏] to be real.) Thus,
including fermions properly always suppresses the tunnelling amplitude compared to the
naïve calculation.
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